期刊文献+

Dynamic Impact of High-Density Aluminum Foam

原文传递
导出
摘要 High-density aluminum foam can provide higher stiffness and absorb more energy during the impact Obtaining the constitutive law of such foam requires tri-axial tests with very high pressure,where difficulty may arise because the hydrostatic pressure can reach more than 30 MPa.In this paper,instead of using tri-axial tests,we proposed three easier tests-tension,compression and shear to obtain the parameters of constitutive model(the Deshpande-Fleck model).To verify the constitutive model both statically and dynamically,we carried out addi-tional triaxial tests and direct impact tests,respectively.Based on the derived model,we performed finite element simulation to study the impact response of the present foam.By dimensional analysis,we proposed an empirical equation for a non-dimensional impact time the impact time divided by the time required for plastic wave travelling from the impact surface to the bottom surface,to det ermine the deformation charac teristic of the aluminum foam after impact.For the case with t_(d)≤1,the deformation tends to exhibit a shock-type characteristic,while for the case with t_(d)>5,the deformation tends to exhibit an upsetting-type characteristic.
出处 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2022年第2期198-214,共17页 固体力学学报(英文版)
基金 This work was supported by the National Natural Science Foundation of China(11772334,11890681) the Youth Innovation Promotion Association CAS(2018022) the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB22040501).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部