摘要
电解水制氢可将大规模可再生能源转化为绿氢,广泛用作各式各样的低碳终端能源,如燃料、化工能源和运输等,对碳减排具有重要意义。碱性电解水制氢作为一种最有潜力、大规模化应用的技术,在电解水行业中占据主导地位。基于降低电解制氢过电位的目的,开展了隔膜和阳极电极材料的性能研究。结果表明,高分子复合隔膜Zirfon比聚醚硫醚无纺布具有更低的膜电阻,可将电解水过电位降低0.3 V以上,主要因为Zirfon隔膜具有更低的膜电阻和更高的亲水性,而隔膜的亲水性会影响电极活性位点的利用率,且亲水性越高,电堆的活化阻抗越低。通过比较镍网和泡沫镍的性能,发现镍网用作阳极电极时的电阻低于泡沫镍,具有更低的电解水过电位。可为电解槽关键部件隔膜和电极的优化提供一定参考,利于电解成本的降低。
Since water electrolysis for hydrogen production can transform large-scale renewable energy into green hydrogen,it is widely used in low-carbon terminal energy applications,such as fuel,chemical and transportation industry.This technique plays an important role in carbon emission reduction.Alkaline water electrolysis for hydrogen production has attracted much attention as one of the most promising large-scale hydrogen production technologies.In order to lower the overpotential in water electrolysis for hydrogen production,the properties of membranes and anode materials were studied.The results show that the membrane resistance of polymer composite membrane Zirfon is lower than that of polyether sulfide non-woven fabric by 0.3 V.Zirfon membrane has lower membrane resistance and higher hydrophilicity.Hydrophilicity of membranes can affect the utilization rate of the active site on electrode,and a higher hydrophilicity leads to a lower activation impedance of electrode.While choosing the material for anode,nickel mesh shows a lower overpotential in water electrolysis than nickel foam,due to its lower pure resistance.This study can provide reference for the optimization of membranes,electrodes and other key components of electrolytic cells,which will be conducive to the cost reduction of water electrolysis.
作者
郭雅婷
邓甜音
刘艳莹
何广利
GUO Yating;DENG Tianyin;LIU Yanying;HE Guangli(Beijing Institute of Low‐Carbon Clean Energy,Beijing 102211,China)
出处
《综合智慧能源》
CAS
2022年第5期64-68,共5页
Integrated Intelligent Energy
基金
国家能源投资集团有限责任公司项目(GJNY21-81)。
关键词
碱性电解水制氢
隔膜
电极
过电位
可再生能源
碳减排
电解槽
绿氢
alkaline water electrolysis for hydrogen production
membrane
electrode
overpotential
renewable energy
carbon emission reduction
electrolyzer
green hydrogen