期刊文献+

基于迁移学习和支持向量机的乳腺癌分子分型预测 被引量:1

Breast cancer molecular typing prediction based on transfer learning and support vector machine
下载PDF
导出
摘要 乳腺癌分子分型对乳腺癌的治疗具有决定性的参考作用,传统的分型方法有创且可能存在假阳性问题,而已有的基于影像学的分型方法准确率较低。本文提出一种利用迁移学习提取特征并结合支持向量机的分型预测方法,对乳腺癌PET/CT标记图像进行融合和归一化,再使用Xception迁移学习网络进行特征提取,最后使用支持向量机进行分类实现分型。对样本测试集进行性能评估表明,Xception+SVM模型的准确率达到0.687,AUC为0.787,优于现有基于影像学的方法,验证了本文方法的有效性。 Molecular typing of breast cancer plays a decisive reference role in the treatment of breast cancer.Traditional typing methods are invasive and may have the problem of false positive,and the accuracy of existing imaging-based typing methods is unsatisfactory.Therefore,a feature extraction method using transfer learning,combined with typing prediction method of support vector machine(SVM),is proposed in the study.After the fusion and normalization of breast cancer PET/CT marker images,Xception transfer learning network is used for feature extraction,and finally SVM is used for classification and typing.The performance evaluation on test set shows that the accuracy of Xception+SVM model is 0.687,and the AUC is 0.787,better than the existing imaging-based methods,which verifies the effectiveness of the proposed method.
作者 赵清一 林勇 ZHAO Qingyi;LIN Yong(School of Health Science and Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China)
出处 《中国医学物理学杂志》 CSCD 2022年第5期635-639,共5页 Chinese Journal of Medical Physics
基金 国家自然科学基金(81801797)。
关键词 乳腺癌 PET/CT 迁移学习 Xception 支持向量机 breast cancer PET/CT transfer learning Xception support vector machine
  • 相关文献

参考文献6

二级参考文献60

  • 1李卫华,周军,周连文,程英蕾.一种基于提升小波分解图像融合方法[J].计算机应用,2006,26(2):403-405. 被引量:9
  • 2Hill DL. Medical image registration. Phys Med Biol, 2001,4(1):6 被引量:1
  • 3Maintz JB, Viergever MA. A survey of image registration. Med Image Anal, 1998,2(1):1 被引量:1
  • 4Kinahan PE, Townsend DW, Beyer T,et al.Attenuation correction for a combined 3D PET/CT scanner. Med Physi, 1998,25(10):2046 被引量:1
  • 5Pluim JP, Maintz JB, Viergever MA. Image registration by maximization of combined mutual information and gradient information. IEEE Trans Med Imaging, 2000,196(6): 809 被引量:1
  • 6Woods RP, Grafton ST, Watson JD, et al.Automated image registration: II. Intersubject validation of linear and nonlinear models. Journal Computer Assisted Tomography, 1998, 22(1):153 被引量:1
  • 7Lewis PJ, Siegel A, Siegel AM, et al.Does performing imaging registration and subtraction in ictal brain SPECT help localize neocortical seizures? J Nucl Med, 2000,41(6):1619 被引量:1
  • 8O'Brien TJ, Soel, Mullan BP, et al.Subtraction ictal SPECT co-registered to MRI improves clinical usefulness of SPECT in localizing the surgical seizure focus. Neurology, 1998,50(2): 445 被引量:1
  • 9Yu C, Petrovich Z, Apuzzo ML, et al.An image fusion study of the geometric accuracy of magnetic resonance imaging with the leksell sterotactic localization system. J Appl Clin Med Phys. 2001,2(1):42 被引量:1
  • 10Chen YT, Wang MS. Three-dimensional reconstruction and fusion for multimodality spinal images. Comput Med Imaging Graph. 2004, 28(1):21 被引量:1

共引文献122

同被引文献12

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部