期刊文献+

MR影像组学在鉴别腮腺良恶性肿瘤中的临床应用价值 被引量:4

Clinical application value of MR-based radiomics for differentiation of benign and malignant of parotid gland
下载PDF
导出
摘要 目的 探讨基于MR多序列联合影像组学模型在鉴别腮腺良恶性肿瘤及区分多形性腺瘤和Warthin瘤的临床应用价值。材料与方法 回顾性分析经手术病理证实的124例腮腺良性肿瘤患者(64例多形性腺瘤,60例Warthin瘤)和52例恶性肿瘤患者的临床资料及术前MRI图像。使用ITK-SNAP软件在T2脂肪抑制序列(fat saturated T2 weighted imaging,FS-T2WI)上手动勾画肿瘤的感兴趣区,然后配准到表观扩散系数(apparent diffusion coefficient,ADC)和对比增强T1加权成像(contrast enhanced T1 weighted imaging,CE-T1WI)图像上。采用FAE软件分别从FS-T2WI、ADC及CE-T1WI序列中提取1316个影像组学特征,利用循环特征消除(recursive feature elimination,RFE)方法进行特征选择,支持向量机作为分类器构建影像组学模型。绘制受试者工作特征(receiver operating characteristic,ROC)曲线评价各个模型的鉴别诊断效能,并采用Delong检验评估模型间的差异。结果 腮腺肿瘤的MRI特征表现:相比腮腺良性肿瘤,恶性肿瘤多位于深叶或双叶(P<0.001),边界欠清晰(P<0.001),肿瘤内部信号欠均匀(P=0.003),多发生囊变、坏死(P=0.002),肿瘤侵犯周围结构或出现淋巴结转移提示恶性肿瘤的可能性较大(P<0.001)。影像组学模型分析:基于FS-T2WI、ADC及CE-TIWI序列构建7个影像组学模型鉴别腮腺肿瘤的良恶性,其ROC曲线下面积如下:FS-T2WI模型为0.798,ADC模型为0.838,CE-T1WI模型为0.856,FS-T2WI+ADC模型为0.815,FS-T2WI+CE-T1WI模型为0.858,ADC+CE-T1WI模型为0.863,多序列联合模型为0.878。以同样的方法构建7个影像组学模型鉴别腮腺多形性腺瘤和Warthin瘤,其ROC曲线下面积分别为:0.724、0.910、0.848、0.887、0.876、0.915、0.954。结论 多序列联合模型鉴别腮腺良恶性肿瘤及区分多形性腺瘤和Warthin瘤的诊断效能优于单一序列和双序列,其中单序列中又分别以CE-T1WI和ADC模型的诊断效能最高。 Objective:To explore the clinical application value of radiomics model with multi-sequence combination in differentiating benign from malignant tumor of parotid gland and,among the former,differentiating pleomorphic adenomas from Warthin tumors.Materials and Methods:The clinical data and preoperative MRI images of 124 patients with parotid benign tumors,including 64 cases of pleomorphic adenomas and 60 cases of Warthin tumors,and 52 patients with malignant tumors by pathology were analyzed retrospectively.The region of interest was created manually from fat saturated T2 weighted imaging(FS-T2WI) using ITK-SNAP software,then FS-T2WI was registered to the apparent diffusion coefficient(ADC) map and contrast enhanced T1 weighted imaging(CE-T1WI),respectively.The FAE software was used to extract 1316 radiomics features from FS-T2WI,ADC and CE-T1WI,respectively.Features were selected by using recursive feature elimination(RFE) method,and support vector machine,as the classifier,was used to develop radiomics model.The receiver operating characteristic(ROC) curves were drawn to evaluate differential diagnosis performance of each model and Delong’s test was used to compare the differences between models.Results:The MRI features of parotid tumors were as following:compared with parotid benign tumors,malignant tumors were mostly located in deep lobe or double lobes(P<0.001),with less clear boundary(P<0.001),heterogeneous appearance(P=0.003),more cystic degeneration or necrosis occurred(P=0.002) and infiltration of surrounding structures or lymph node metastasis suggests a greater possibility of malignancy(P<0.001).The radiomics models were analyzed as follows:7 radiomics models were constructed based on FS-T2WI,ADC and CE-TIWI sequence to distinguish benign from malignant tumors of parotid gland.The ROC analyses on 7 models resulted in an area under the curve(AUC) of0.798 for FS-T2WI model,0.838 for ADC model,0.856 for CE-T1WI model,0.815 for FS-T2WI+ADC model,0.858 for FS-T2WI+CE-T1WI model,0.863 for ADC+CE-T1WI model,a
作者 齐金博 高安康 白洁 程敬亮 文宝红 王斐斐 张赞霞 马潇越 QI Jinbo;GAO Ankang;BAI Jie;CHENG Jingliang;WEN Baohong;WANG Feifei;ZHANG Zanxia;MA Xiaoyue(Department of Magnetic Resonance Imaging,the First Affiliated Hospital of Zhengzhou University,Zhengzhou 450052,China)
出处 《磁共振成像》 CAS CSCD 北大核心 2022年第5期34-39,共6页 Chinese Journal of Magnetic Resonance Imaging
基金 河南省医学科技攻关计划联合共建项目(编号:LHGJ20190157) 河南省医学科技攻关计划省部共建青年项目(编号:SBGJ202103078)。
关键词 腮腺肿瘤 磁共振成像 影像组学 WARTHIN瘤 多形性腺瘤 parotid tumors magnetic resonance imaging radiomics Warthin tumors pleomorphic adenomas
  • 相关文献

同被引文献19

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部