期刊文献+

A Meshless Collocation Method with Barycentric Lagrange Interpolation for Solving the Helmholtz Equation

下载PDF
导出
摘要 In this paper,Chebyshev interpolation nodes and barycentric Lagrange interpolation basis function are used to deduce the scheme for solving the Helmholtz equation.First of all,the interpolation basis function is applied to treat the spatial variables and their partial derivatives,and the collocation method for solving the second order differential equations is established.Secondly,the differential matrix is used to simplify the given differential equations on a given test node.Finally,based on three kinds of test nodes,numerical experiments show that the present scheme can not only calculate the high wave numbers problems,but also calculate the variable wave numbers problems.In addition,the algorithm has the advantages of high calculation accuracy,good numerical stability and less time consuming.
出处 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第1期25-54,共30页 工程与科学中的计算机建模(英文)
基金 partially supported by National Natural Science Foundation of China(11772165,11961054,11902170) Key Research and Development Program of Ningxia(2018BEE03007) National Natural Science Foundation of Ningxia(2018AAC02003,2020AAC03059) Major Innovation Projects for Building First-class Universities in China’s Western Region(Grant No.ZKZD2017009).
  • 相关文献

参考文献1

二级参考文献14

  • 1I.M. Babuska and S.A. Sauter, Is the pollution effect of the FEM avoidable for the Helmholtz equation considering high wave numbers? SIAM Rev., 42:3 (2000), 451-484. 被引量:1
  • 2G. Bao and W. Sun, A fast algorithm for the electromagnetic scattering from a large cavity, SIAM J. Sci. Comput., 27:2 (2005), 553-574. 被引量:1
  • 3E. Erturk and C. Gokcol, Fourth-order compact formulation of Navier-Stokes equations and driven cavity flow at high Reynolds numbers, Int. J. Numer. Meth. Fl., 50 (2006), 421-436. 被引量:1
  • 4I. Harari and E. Turkel, Accurate finite difference methods for time-harmonic wave propagation, J. Comput. Phys., 119 (1995), 252-270. 被引量:1
  • 5M. Li, T. Tang and B, Fornberg, A compact fourth-order finite difference scheme for the'steady incompressible Navier-Stokes equations, Int. J. Numer. Meth. Fl.. 20 (1995), 1137-1151. 被引量:1
  • 6M. Li and T. Tang, A compact fourth-order finite difference scheme for unsteady Navier-Stokes equations, J. Sci. Comput., 16 (2001), 29-46. 被引量:1
  • 7Y.V.S.S. Sanyasiraju and V. Manjula, Higher order semi compact scheme to solve transient incompressible Navier-Stokes equations, Comput. Mech., 35 (2005), 441-448. 被引量:1
  • 8J. Shen and L. Wang, Spectral approximation of the Helmholtz equation with high wave numbers, SIAM J. Numer. Anal., 43:2 (2005), 623-644. 被引量:1
  • 9J. Shen and T. Tang, Spectral and High-Order Methods with Applications, Science Press, Beijing, 2007. 被引量:1
  • 10W.F. Spotz, High-Order Compact Finite Difference Schemes for Computational Mechanics. PhD thesis, University of Texas at Austin, December, 1995. 被引量:1

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部