摘要
污秽闪络是威胁电力系统安全的主要因素之一,为了预防污闪事故的发生,需要定期对绝缘子表面的污秽度进行检测,但传统的停电取样检测周期长,耗费大量人力物力。文中提出一种利用激光诱导击穿光谱(LIBS)技术对绝缘子表面污秽度进行分析的方法。以10个带有不同等值盐密、等值灰密的自然污秽玻璃绝缘子为主要研究对象,将其上表面分为内、中、外环3个区域,研究不同测试策略下定标模型的相关系数,采用Na 589.592 nm、Al 396.192 nm作为特征谱线,发现对于盐密的检测定标模型,采用内、中环联合区域的测试策略,相关系数可达0.9481,检测相对误差在5%以内;对于灰密的检测定标模型,采用中环独立区域的测试策略,相关系数可达0.9383,检测相对误差在15%以内。该分析手段能实现现场快速分析绝缘子表面污秽度,提升输电线路运行安全维护作业能力,具有重要的工程应用价值。
Pollution flashover is one of the main factors threatening the safety of power system.In order to prevent pollution flashover accident,it is necessary to regularly analyze the contamination of insulator surface.However,the traditional power outage sampling method has a long detection period and consumes a lot of manpower and material resources.In this paper,a strategy and a model for the surface pollution analysis of insulators using laser-induced breakdown spectroscopy are proposed.10 glass insulators with different equivalent salt deposit density(ESDD)and non-soluble deposit density(NSDD)are taken as research object,and the glass insulator′s surface can be divided into inner,middle and outer ring.The calibration of coefficient of correlation of the model under different test strategy is studied,using Na 589.592 nm,Al 396.192 nm as characteristic spectral lines.The result shows that for ESDD,the coefficient of correlation can reach 0.9481 when inner and middle rings are selected as test objects.And the relative error of detection is within 5%.For NSDD,the coefficient of correlation can reach 0.9383 when middle ring is selected as test object.And the relative error of detection is within 15%.The analysis method can realize the quick on-site analysis of insulator surface contamination and improve the operation ability of transmission line operation safety maintenance,which has important engineering application value.
作者
晋涛
芦山
刘星廷
何永琪
王希林
贾志东
JIN Tao;LU Shan;LIU Xingting;HE Yongqi;WANG Xilin;JIA Zhidong(State Grid Shanxi Electric Power Company Research Institute,Taiyuan 030001,China;Guangdong Engineering Technology Research Centre of Power Equipment Reliability in Complicated Coastal Environments,Shenzhen 518055,China)
出处
《电力工程技术》
北大核心
2022年第3期163-170,共8页
Electric Power Engineering Technology
基金
国家自然科学基金资助项目(51777107)。