期刊文献+

一种高效用模式挖掘算法

A High Utility Pattern Mining Algorithm
下载PDF
导出
摘要 针对已有两阶段高效用挖掘算法在遍历解空间时耗时过长的问题,提出一种随机高效用模式挖掘算法。即在阶段一置若干随机数,每个随机数对应一个节点,随后计算该节点的事务权重效用值并利用事务权重向下闭包的特性,若该节点的事务权重效用值低于设定阈值,则该项集的任意超集被剪枝。实验表明,该算法平均运行效率相较原始算法有明显提升。 Aiming at the problem that the existing two-stage high utility mining algorithm takes too long to traverse the solution space, a random high utility pattern mining algorithm is proposed. That is, set several random numbers at one stage, and each random number corresponds to a node. Then calculate the transaction weight utility value of the node, and use the transaction weight downward closure feature. If the transaction weight utility value of the node is lower than the set threshold, any superset of the itemset will be pruned. Experiments show that the average running efficiency of the algorithm is significantly improved compared with the original algorithm.
作者 钟新成 李慧芳 ZHONGXin-cheng;LIHui-fang(DepartmentofComputerScience,ChangzhiUniversity,ChangzhiShanxi,046011)
出处 《山西大同大学学报(自然科学版)》 2022年第2期21-23,共3页 Journal of Shanxi Datong University(Natural Science Edition)
基金 长治学院科研项目[020-XN0054]。
关键词 高效用 事务权重效用 剪枝 high utility transaction weighted utility prune
  • 相关文献

参考文献3

二级参考文献30

  • 1Wang Le , Feng Lin, j in Bo. Sliding window-based frequent itemsets mining over data streams using tail pointer table[J]. Int Journal of Computational Intelligence Systems, 2014,7(1): 25-36. 被引量:1
  • 2Tseng V S, Shie B, Wu C, et al. Efficient algorithms for mining high utility itemsets from transactional databases[J]. IEEE Trans on Knowledge and Data Engineering, 2013, 25 (8): 1772-1786. 被引量:1
  • 3Tseng V S, Wu C W, Shie B E, et al. UP-Growth: An efficient algorithm for high utility itemset mining[C]//Proc of the 16th ACM SIGKDD Int Conf on Knowledge Discovery and Data Mining. New York: ACM, 2010: 253-262. 被引量:1
  • 4Ahmed C F, Tanbeer S K, Jeong B S, et al. Efficient tree structures for high utility pattern mining in incremental databases[J]. IEEE Trans on Knowledge and Data Engineering, 2009, 21(12): 1708-1721. 被引量:1
  • 5Yao H, Hamilton H J. Mining itemset utilities from transaction databases[J]. Data and Knowledge Engineering, 2006, 59(3): 603-626. 被引量:1
  • 6Liu Y, Liao W K, Choudhary A. A two-phase algorithm for fast discovery of high utility item sets[GJ //LNCS 3518: Proc of the 9th Pacific-Asia Conf on Advances in Knowledge Discovery and Data Mining. Berlin: Springer, 2005: 689-695. 被引量:1
  • 7Li H. Huang H. Chen Y. et al. Fast and memory efficient mining of high utility iternsets in data streams[C] I/Proc of the 8th IEEE Int Conf on Data Mining. Los Alamitos. CA, IEEE Computer Society. 2008: 881-886. 被引量:1
  • 8Liu J. Wang K. Fung B. Direct discovery of high utility iternsets without candidate generation[C] I/Proc of the 12th IEEE Int Conf on Data Mining. Los Alamitos. CA, IEEE Computer Society. 2012: 984-989. 被引量:1
  • 9Lin C W. Hong T P. Lan G C. er al. Mining high utility it ernsets based on the pre-large concept[GJ I/Advances in Intelligent Systems and Applications-Volume 1. Berlin: Springer. 2013: 243-250. 被引量:1
  • 10Liu M. Qu J. Mining high utility itemset s without candidate generation[C]//Proc of the 21 st ACM Inr Conf on Information and Knowledge Management. New York, ACM. 2012, 55-64. 被引量:1

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部