期刊文献+

Improved edge lightweight YOLOv4 and its application in on-site power system work 被引量:5

下载PDF
导出
摘要 A“cloud-edge-end”collaborative system architecture is adopted for real-time security management of power system on-site work,and mobile edge computing equipment utilizes lightweight intelligent recognition algorithms for on-site risk assessment and alert.Owing to its lightweight and fast speed,YOLOv4-Tiny is often deployed on edge computing equipment for real-time video stream detection;however,its accuracy is relatively low.This study proposes an improved YOLOv4-Tiny algorithm based on attention mechanism and optimized training methods,achieving higher accuracy without compromising the speed.Specifically,a convolution block attention module branch is added to the backbone network to enhance the feature extraction capability and an efficient channel attention mechanism is added in the neck network to improve feature utilization.Moreover,three optimized training methods:transfer learning,mosaic data augmentation,and label smoothing are used to improve the training effect of this improved algorithm.Finally,an edge computing equipment experimental platform equipped with an NVIDIA Jetson Xavier NX chip is established and the newly developed algorithm is tested on it.According to the results,the speed of the improved YOLOv4-Tiny algorithm in detecting on-site dress code compliance datasets is 17.25 FPS,and the mean average precision(mAP)is increased from 70.89%to 85.03%.
出处 《Global Energy Interconnection》 EI CAS CSCD 2022年第2期168-180,共13页 全球能源互联网(英文版)
基金 supported by the Science and technology project of State Grid Information&Telecommunication Group Co.,Ltd (SGTYHT/19-JS-218)
  • 相关文献

参考文献3

二级参考文献9

共引文献564

同被引文献49

引证文献5

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部