期刊文献+

Capturing semantic features to improve Chinese event detection 被引量:1

下载PDF
导出
摘要 Current Chinese event detection methods commonly use word embedding to capture semantic representation,but these methods find it difficult to capture the dependence relationship between the trigger words and other words in the same sentence.Based on the simple evaluation,it is known that a dependency parser can effectively capture dependency relationships and improve the accuracy of event categorisation.This study proposes a novel architecture that models a hybrid representation to summarise semantic and structural information from both characters and words.This model can capture rich semantic features for the event detection task by incorporating the semantic representation generated from the dependency parser.The authors evaluate different models on kbp 2017 corpus.The experimental results show that the proposed method can significantly improve performance in Chinese event detection.
机构地区 School of Computing
出处 《CAAI Transactions on Intelligence Technology》 SCIE EI 2022年第2期219-227,共9页 智能技术学报(英文)
基金 973 Program,Grant/Award Number:2014CB340504 The State Key Program of National Natural Science of China,Grant/Award Number:61533018 National Natural Science Foundation of China,Grant/Award Number:61402220 The Philosophy and Social Science Foundation of Hunan Province,Grant/Award Number:16YBA323 Natural Science Foundation of Hunan Province,Grant/Award Number:2020JJ4525 Scientific Research Fund of Hunan Provincial Education Department,Grant/Award Number:18B279,19A439。
  • 相关文献

参考文献1

共引文献9

同被引文献17

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部