期刊文献+

上三角算子矩阵的左(右)本质谱的自伴扰动

Self-adjoint Perturbations of Left(right)Essential Spectrum for Upper Triangular Operator Matrices
原文传递
导出
摘要 设H为无穷维Hilbert复可分空间.对给定算子A∈B(H)和B∈B(H),记M_(x):=[AXOB],其中X∈Y(H)为自伴算子.本文首先给出了存在X∈Y(H),使得M_(x)为左(右)Fredholm算子的充分必要条件.其次,证明了∩X∈Y(H)σ*(M_(x))=∩X∈B(H)σ*(M_(x))∪△,其中σ*是左(右)本质谱.最后,刻画了Hamilton算子矩阵的左(右)本质谱的扰动. Let H be complex separable infinite-dimensional Hilbert spaces.Given the operators A∈B(H) and B∈B(H), we define Mx:=[AXOB]where X∈Y(H) is a self-adjoint operator.In this paper,a necessary and sufficient condition is given for Mx to be a left(right)Fredholm operator for some X∈Y(H). Moreover,it is shown that ∩X∈Y(H)σ*(Mx)=∩X∈B(H)σ*(Mx)∪△,where σ* is the left(right)essential spectrum.Finally,we further characterize the perturbation of the left(right)essential spectrum for Hamiltonian operators.
作者 吴秀峰 黄俊杰 阿拉坦仓 Xiu Feng WU;Jun Jie HUANG;Alatancang(Mathematics Science College,Imer Mongolia Normal University,Hohhot 010022,P.R.China;Mathematics Science College,Inner Mongolia University,Hohhot 010021,P.R.China)
出处 《数学学报(中文版)》 CSCD 北大核心 2022年第3期423-434,共12页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金(11901323,11961052,11761029,11761052) 内蒙古自治区自然科学基金项目(2018BS01001) 内蒙古自治区高等学校科学研究重点项目(NJZZ18018,NJZZ20014) 内蒙古师范大学引进人才项目(2017YJRC018) 内蒙古自治区高等学校青年科技人才发展计划(NJYT22029)
关键词 上三角算子矩阵 自伴算子 左(右)Fredholm算子 HAMILTON算子 upper triangular operator matrix self-adjoint operator left(right)Fredholm operator Hamiltonian operator
  • 相关文献

参考文献2

二级参考文献10

  • 1侯国林,阿拉坦仓.2×2阶上三角算子矩阵的谱扰动[J].系统科学与数学,2006,26(3):257-263. 被引量:16
  • 2Du, H. K., Pan, J.: Perturbation of spectrums of 2 × 2 operator matrices. Proc. Amer. Math. Soc., 121,761-766 (1994). 被引量:1
  • 3Han, J. K., Lee, H. Y., Lee, W. Y.: Invertible completions of 2 × 2 upper triangular operator matrices.Proc. Amer. Math. Soc., 128, 119-123 (2000). 被引量:1
  • 4Han, Y. M., Djordjevi6, S. VI: a-Weyl's theorem for operator matrices. Proc. Amer. Math, Soc., 130,715-722 (2001). 被引量:1
  • 5Lee, W. Y.: Weyl spectra of operator matrices. Proc, Amer. Math. Soc., 129, 131-138 (2000). 被引量:1
  • 6Lee, W. Y.: Weyl's theorem for operator matrices. Intege. Equ. Oper. Theory, 32, 319-331 (1998). 被引量:1
  • 7Weyl, H.: Uber beschrankte quadratische Formen, deren Differenz vollstetig ist. Rend. Circ. Mat. Palermo,27, 373-392 (1909). 被引量:1
  • 8Djordjevic, SI V.,Djordjevic, D. S.: Weyl's theorems: continuity of the spectrum and quasihyponormal operators. Acta Sci. Math. (Szeged), 64, 259-269 (1998). 被引量:1
  • 9Rakocevic, V.: Operators obeying a-Weyl's theorem. Rev. Roumaine Math. Pures Appl., 34(10), 915-919(1989). 被引量:1
  • 10Taylor, A. E.: Theorems on ascent, descent, nullity and defect of linear operators. Math. Ann., 168, 18-49(1966). 被引量:1

共引文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部