期刊文献+

基于深度学习的织物图像检索系统研究 被引量:4

Study on Fabric Image Retrieval System Based on Deep Learning
下载PDF
导出
摘要 为了提高纺织行业的织物管理效率,解决织物检索耗时久、检索精度低等问题,使用改进的深度学习网络LResNet50E⁃IR得到织物图像的特征表示,利用faiss索引进行特征相似度匹配后,排序输出检索的结果。同时,提出分级检索策略,根据不同类别的织物特点先分类,再通过改进的神经网络训练得到相应检索模型,最后查询未入数据库的织物图像,来验证检索的效果。试验结果表明:本系统检索的top10 mAP高达99.22%,检索速度快。认为:该织物图像检索方法可以满足准确性与高效性的要求。 In order to increase the fabric management efficiency of textile industry,solve the problems like long time-consuming of fabric retrieval,lower retrieval accuracy and so on,the improved deep learning network LResNet50E-IR was used to obtain the character representation of fabric images.Faiss index was used to match similarity of characteristics,then the results were sorted and output.Meanwhile,classification retrieval strategy was put forward.According to fabric characteristics of different classification,sorting was firstly done,then corresponding retrieval model was obtained by improved neural network training.Finally,by searching the fabric images without imputing in database,the retrieval effect was verified.The experimental results showed that top 10 mAP retrieved by the system was reached up to 99.22%.The retrieval was fast.It is considered that the fabric image retrieval method can meet the requirements on accuracy and high efficiency.
作者 刘瑞昊 于振中 孙强 LIU Ruihao;YU Zhenzhong;SUN Qiang(Jiangnan University,Wuxi,214122,China;HRG International Institute(Hefei)of Research and Innovation,Hefei,230601,China)
出处 《棉纺织技术》 CAS 北大核心 2022年第5期42-47,共6页 Cotton Textile Technology
基金 安徽省科技攻关计划(202003a05020015)。
关键词 织物 图像检索 深度学习 卷积神经网络 分级检索 faiss索引 fabric image retrieval deep learning convolutional neural networks classification retrieval faiss index
  • 相关文献

参考文献12

二级参考文献39

  • 1王兆仲,周付根,刘志芳,杨建峰.一种高精度的图像匹配算法[J].红外与激光工程,2006,35(6):751-755. 被引量:9
  • 2PANG N T,MICHAEL S,VIPIN K.数据挖掘导论(英文版)[M].北京:人民邮电出版社,2006. 被引量:1
  • 3马卫武 李念平 杨志昂.室内空气品质综合评价权重系数的确定与分析.通风除尘,2004,(11):9-11. 被引量:2
  • 4Shensa M J. The Discrete Wavelet Transform: Wedding the A-Trous and Mallat Algorithms[J]. IEEE Trans. on Single Processing, 1992:40(10): 2464-2478 被引量:1
  • 5Liang J A. Translation-invariant Wavelet Representation Algorithm with Application[J]. IEEE Trans. SP, 1996: 42(2): 225-232 被引量:1
  • 6Panjwani D K, Healey G . Markov Random Field Models for Unsupervised Segmentation of Textured Color Images. IEEE Trans.PAMI, 1995, 17:283-291 被引量:1
  • 7HAN JW,KAMBER M.数据挖掘概念与技术[M].北京:机械工业出版社,2005. 被引量:6
  • 8MORAVEC H.Rover visual obstacle avoidance[C]//International Joint Conference on Artificial Intelligence,1981:785-790. 被引量:1
  • 9HARRIS C,STEPHENS M.Acombined corner and edge detector[C]//Fourth Alvey Vision Conference,1988:147-151. 被引量:1
  • 10SCHMID C,MOHR R.Local grayvalue invariants for image retrieval[J].IEEE Trans on Pattern Analysis and Machine Intelligence,1997,19(5):530-534. 被引量:1

共引文献185

同被引文献29

引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部