摘要
Variogram has been utilized to exploring the spatial heterogeneity of remote sensing images,especially its association with spatial resolution.However,very few attentions have been drawn on evaluating the spatial heterogeneity of multisensor airborne imagery and its relationship with spectral wavelength.Therefore,an investigation was carried out on multisensor airborne images to determine the relation between spatial heterogeneity and spectral wavelength for woodland,grass,and urban landscapes by applying variogram modeling.The airborne thematic mapper(ATM),compact airborne spectrographic imager(CASI),and Specim AISA Eagle airborne images at Harwood Forest,Monks wood,Cambridge,and River Frome areas,UK,were utilized.Results revealed that(1)the red band contained greater spatial variability than near-infrared wavelengths and other visible wavebands;(2)there was a steep gradient at the red edge in reference to its spatial variability of multisensor airborne images;(3)only for natural landscape such as woodland and grass,near-infrared waveband contains greater within-scene variations than the blue and green bands;(4)compared with the discrepancy of spatial resolution introduced by multisensor images(ATM,CASI,and Eagle),the specific landscape and spectral bands were more important in determining heterogeneity by means of original visible,near-infrared bands,and normalized difference vegetation index(NDVI).These findings remained us to be caution when combining and interpreting spatial variability and spatial structures derived from airborne images with different spatial resolution and spectral wavelength.Additionally,the outcomes of this study also have considerable implications in terms of designing and choosing suitable images for different applications.
基金
The authors gratefully acknowledge the financial support received for this work from the National Natural Science Foundation of China[grant numbers 41471362 and 41071267]
the Scientific Research Foundation for Returned Scholars,Ministry of Education of China(LXKQ201202)
the Science and Technology Department of Fujian Province of China[grant numbers 2012I0005 and 2012J01167]
The authors would like to thank the Natural Environment Research Council of UK for the provision of the airborne remote sensing data,and Ben Taylor and Gabriel Amable who kindly offered help in processing these data.