摘要
文章提出深度神经网络的方法,将分治策略引入到人流量统计问题中。这个方法以VGG16作为特征编码网络,UNet作为解码网络,将人流量统计变成一个可拆解的任务。在统计图片上人数时,总可以把图片分解成多个子区域,使得每个区域的人流量计数都是在之前训练集上所见过的人数类别。然后再把每个子区域上面的人数加起来,就是统计结果。在对广州某个中国移动营业厅的人流量统计的实验中,预测的速度能达到实时监测的速度和高精确度。
In this paper,the method of deep neural network is proposed,and the divide and conquer strategy is introduced into the problem of people flow statistics.This method takes VGG16 as the feature coding network and UNet as decoding network,which turns the people flow statistics into a detachable task.When counting the number of people on the pictures,we can always decompose the picture into multiple sub-regions,so that the people flow count in each area is the number of people seen on the previous training set.Then add up the number of people in each sub-region,which is the result of statistics.In the experiment of people flow statistics in a China mobile business hall in Guangzhou,the predicted speed can reach real-time monitoring speed,and has high accuracy.
作者
陈乐
丁戈
肖忠良
CHEN Le;DING Ge;XIAO Zhongliang(GMCC,Beijing 102200,China)
出处
《现代信息科技》
2021年第24期84-88,共5页
Modern Information Technology