期刊文献+

电站锅炉巡检无人机图像增强及智能识别技术 被引量:1

Image Enhancement and Intelligent Recognition Technology of UAV for Power Plant Boiler Inspection
下载PDF
导出
摘要 锅炉是燃煤电站最重要的设备之一,关系到电力生产的安全稳定。由于结焦和爆管等因素,目前电站锅炉的检修主要依靠人工开展。利用无人机等智能设备开展炉膛巡视和检修,能够降低检修成本,提高检修效率和安全性。受限于炉膛昏暗和多灰的环境,无人机巡视图像通过光学校正、去噪及去模糊后,获得了高分辨率图像。利用该图像可以开展人工巡检和智能识别,解决了电站锅炉无人机巡检视频图像质量不高的难题。 Boiler is one of the most important equipment in coal-fired power plant, which is related to the safety and stability of power production. Due to coking and tube burst and other factors, the current maintenance of utility boilers mainly depends on manual work. Using UAV and other intelligent equipment to carry out inspection and maintenance can reduce maintenance cost and improve maintenance efficiency and safety. Limited by the dark and dusty environment of the furnace, the UAV patrol image obtains a high-resolution image after optical correction, denoising and deblurring. The image can be used for manual patrol inspection and intelligent recognition, and the problem of low video image quality of UAV patrol inspection of utility boiler is solved.
作者 张坚群 Zhang Jianqun(Yueqing Power Generation Co.,Ltd.,Zhejiang,Wenzhou,325609,China)
出处 《仪器仪表用户》 2022年第5期95-99,83,共6页 Instrumentation
关键词 炉膛 无人机 巡检 图像增加 智能识别 furnace UAV inspection image increase intelligent identification
  • 相关文献

参考文献8

二级参考文献27

  • 1季斌南.长航时无人机的特点、作用及发展动向[J].国际航空,1997(2):28-30. 被引量:29
  • 2Curent and Future UAV Military Users and Applications. AIR & SPACE EUROPE, 1999,1 (5) :51-58. 被引量:1
  • 3Peter van BLYENBURGH. UAVs : an Overview. AIR & SPACE EUROPE,1999,1 (5) :43 -47. 被引量:1
  • 4HENG L, HONEGGER D, LEE G H, et al. Autonomous visual map- ping and exploration with a micro aerial vehicle [J]. Journal of Field Robotics, 2014, 31(4): 654 - 675. 被引量:1
  • 5PESTANA J, MELLADO-BATALLER I, SANCHEZ-LOPEZ J L, et al. A general purpose configurable controller for indoors and outdoors gps-denied navigation for multirotor unmanned aerial vehicles [J]. Journal of Intelligent Robotic Systems, 2014, 73(1-4), 387 - 400. 被引量:1
  • 6WU A D, JOHNSON E N, KAESS M, et al. Autonomous flight in GPS-denied environments using monocular vision and inertial sen- sors [J]. Journal of Aerospace Information Systems, 2013, 10(4): 172 - 186. 被引量:1
  • 7BRISTEAU P J, CALLOU F, VISSIERE D, et al. The navigation and control technology inside the at.drone micro uav [C]//18th IFAC World Congress. Milano: IEEE, 2011, 18(1): 1477 - 1484. 被引量:1
  • 8CHAO H, GU Y, GROSS J, et al. A comparative study of optical flow and traditional sensors in UAV navigation [C] //American Con- trol Conference. Washington, DC: IEEE, 2013:3858 - 3863. 被引量:1
  • 9KALAL Z, MIKOLAJCZYK K, MATAS J. Forward-backward error: Automatic detection of tracking failures [C] //International Confer- ence on Pattern Recognition. Istanbul: 1EEE, 2010:2756 - 2759. 被引量:1
  • 10COMANICIU D, MEER E Mean shift: A robust approach toward feature space analysis [J]. Pattern Analysis and Machine Intelligence, 2002, 24(5): 603 - 619. 被引量:1

共引文献111

同被引文献8

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部