摘要
以某500 kV高压变电站典型圆钢管构架避雷针结构为例,建立避雷针风振响应分析的模型,采用双向流固耦合方法模拟分析了避雷针的顺风向及横风向风振响应,并采用外附螺旋导板的方法对其横风向风振响应进行了减振优化设计。结果表明:圆钢管构架避雷针因具有细、柔的上部结构特点,其顺风向和横风向的风振响应较为突出,尤其是横风向风振响应在某些条件下甚至占据主导地位。就该研究分析的构架避雷针而言,当来流风速为12.64~25.30 m/s时,结构会产生横风向涡激振动“锁定”现象,而且其最大共振响应(对应风速为18.97 m/s)甚至超过设计基本风速(23.83 m/s)作用下结构的顺风向风振响应值。实际设计时,可考虑在构架避雷针顶部外附螺距为8 D、覆盖率30%的螺旋导板,以有效控制其横风向涡激振动。
Taking the lightning rod structure of a 500 kV high-voltage substation as an example,the finite element model was established to do the lightning rod wind-induced vibration response analysis.The wind-induced vibration response of the lightning rod was simulated and analyzed by the two-way fluid structure coupling method,and the vibration reduction optimization design of the lightning rod was carried out by using the method of an attaching spiral guide plate.The results show that:due to the thin and flexible superstructure characteristics,the wind-induced vibration response of the lightning rod with round steel tube frame is more prominent in the along-wind direction and across-wind direction,especially the across-wind direction vibration response even occupies the dominant position in some conditions.For the frame lightning rod analyzed in this paper,when the wind speed is 12.64-25.30 m/s,the across-wind direction vortex induced vibration“lock-in”phenomenon will occur,and its maximum resonance response(wind speed of 18.97 m/s)even exceeds the along-wind direction response value of the structure under the design basic wind speed(23.83 m/s).In the actual design,the spiral guide plate with pitch of 8 D and coverage rate of 30%can be attached to the top of the frame lightning rod to control its across-wind direction vortex induced vibration effectively.
作者
赵桂峰
曹鹏毅
石雨昊
张猛
刘冉
ZHAO Guifeng;CAO Pengyi;SHI Yuhao;ZHANG Meng;LIU Ran(School of Civil Engineering,Zhengzhou University,Zhengzhou 450001,China)
出处
《振动与冲击》
EI
CSCD
北大核心
2022年第8期158-170,共13页
Journal of Vibration and Shock
基金
国家自然科学基金(51578512)。
关键词
构架避雷针
双向流固耦合
涡激振动
风振响应
螺旋导板
frame lightning rod
bidirectional fluid-structure coupling
vortex-induced vibration
wind-induced vibration response
helical strakes