期刊文献+

MobileNet network optimization based on convolutional block attention module 被引量:3

基于卷积注意力机制的MobileNet网络优化
下载PDF
导出
摘要 Deep learning technology is widely used in computer vision.Generally,a large amount of data is used to train the model weights in deep learning,so as to obtain a model with higher accuracy.However,massive data and complex model structures require more calculating resources.Since people generally can only carry and use mobile and portable devices in application scenarios,neural networks have limitations in terms of calculating resources,size and power consumption.Therefore,the efficient lightweight model MobileNet is used as the basic network in this study for optimization.First,the accuracy of the MobileNet model is improved by adding methods such as the convolutional block attention module(CBAM)and expansion convolution.Then,the MobileNet model is compressed by using pruning and weight quantization algorithms based on weight size.Afterwards,methods such as Python crawlers and data augmentation are employed to create a garbage classification data set.Based on the above model optimization strategy,the garbage classification mobile terminal application is deployed on mobile phones and raspberry pies,realizing completing the garbage classification task more conveniently.
作者 ZHAO Shuxu MEN Shiyao YUAN Lin 赵庶旭;门士尧;元琳(兰州交通大学,电子与信息工程学院,甘肃兰州730070)
出处 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2022年第2期225-234,共10页 测试科学与仪器(英文版)
关键词 MobileNet convolutional block attention module(CBAM) model pruning and quantization edge machine learning MobileNet 卷积注意力机制 模型修剪与量化 边缘机器学习
  • 相关文献

参考文献1

二级参考文献3

共引文献33

同被引文献24

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部