期刊文献+

基于图像编码技术和卷积神经网络的刀具磨损值在线监测方法 被引量:6

On-line monitoring method for tool wear based on image coding technology and convolutional neural network
下载PDF
导出
摘要 为提高刀具磨损在线监测的精度及泛化性能,提出一种基于格拉姆角场(GAF)编码技术和卷积神经网络(CNN)的刀具磨损值在线监测方法,利用GAF图像编码技术将铣削加工过程中采集的时间序列信号数据图像化,既保留了信号的原始特征信息,又增强了时间序列特征信息。采用深度CNN自适应的提取图像特征,避免人工特征提取带来的复杂性和局限性。使用同类研究所用的数据集进行实验,验证了该方法在刀具磨损在线监测中的有效性和可行性,在多项评价标准下其精度较其他几种方法有了较大提高。 To improve the accuracy and generalization performance of online tool wear monitoring,an online tool wear monitoring method was proposed based on image coding technology and convolutional neural network.Using Gramian Angle Field(GAF)image coding technology to image the time-series signal data collected during the milling process,which not only retained the original characteristic information of the signal but also enhanced time series feature information.To avoid the complexity and limitations caused by artificial feature extraction,the deep convolutional neural network was used to adaptively extract image features.Under the premise of ensuring the accuracy and generalization of the model,the small features in the image signal data were mined by deepening the number of network layers.Experiments with data sets used in similar researches had verified the effectiveness and feasibility of this method in online tool wear monitoring,and its accuracy had been greatly improved compared with other methods under multiple evaluation standards.
作者 滕瑞 黄海松 杨凯 陈启鹏 熊巧巧 谢庆生 TENG Rui;HUANG Haisong;YANG Kai;CHEN Qipeng;XIONG Qiaoqiao;XIE Qingsheng(Key Laboratory of Advanced Manufacturing Technology,Ministry of Education,Guizhou University,Guiyang 550025,China;Department of Mechanical and Manufacturing Engineering,Faculty of Engineering,University Putra Malaysia,Serdang 43400,Malaysia;Department of Mechanical and Electronic Engineering,Guizhou Communications Polytechnic,Guiyang 551400,China)
出处 《计算机集成制造系统》 EI CSCD 北大核心 2022年第4期1042-1051,共10页 Computer Integrated Manufacturing Systems
基金 国家自然科学基金资助项目(51865004,52165063) 贵州省科技计划资助项目(黔科合支撑[2021]一般445,172,397,黔科合支撑[2022]一般165) 现代制造技术教育部重点实验室开放课题基金资助项目(黔教合KY字[2022]377号)。
关键词 刀具磨损 在线监测 格拉姆角场 图像编码 深度卷积神经网络 特征提取 tool wear online monitoring Gramian angle field image coding deep convolutional neural network feature extraction
  • 相关文献

参考文献17

二级参考文献65

共引文献205

同被引文献51

引证文献6

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部