期刊文献+

基于改进人工鱼群算法和模糊C均值的WSN分簇算法

WSN Clustering Algorithm Based on Improved Artificial Fish Swarm Algorithm and Fuzzy C-means
下载PDF
导出
摘要 针对无线传感器网络(Wireless Sensor Networks,WSN)节点能耗不均衡问题,提出一种基于改进人工鱼群算法(Improved Artificial Fish Swarm Algorithm,IAFSA)和模糊C均值(Fuzzy C-Means,FCM)的分簇算法IAFCA。首先,IAFSA改进搜素视野及步长,避免迭代解陷入局部最优解,并将最终的迭代解作为FCM的初始聚类中心,克服FCM对初始解的敏感性。其次,FCM在确定最佳簇头数目的基础上,根据节点间的距离相似性,有效建立起节点与聚类中心间的不确定性关系,合理进行节点分簇。最后,根据节点相对剩余能量和到聚类中心的距离两个参数选举出簇头。IAFCA分别在两种场景下进行仿真实验,并与低能耗自适应聚类层次协议(Low Energy Adaptive Clustering Hierarchy,LEACH)及其变种算法进行对比。实验结果表明,IAFCA在网络寿命和能量效率方面均优于传统的WSN分簇算法,有效延长了网络寿命,降低了节点能耗。 Aiming at the problem of unbalanced energy consumption of Wireless Sensor Networks(WSN),a clustering algorithm IAFCA based on improved artificial fish swarm algorithm(IAFSA)and fuzzy C-means(FCM)is proposed.Firstly,IAFSA improves the search field of view and step size to prevent the iterative solution from falling into the local optimal solution,and uses the final iterative solution as the initial clustering center of FCM to overcome the sensitivity of FCM to the initial solution.Secondly,on the basis of determining the optimal number of cluster heads,FCM effectively establishes the uncertainty relationship between nodes and cluster centers according to the distance similarity between nodes,and rationally clusters WSN nodes.Finally,the cluster head is elected according to the relative remaining energy of the node and the distance to the cluster center.IAFCA conducted experiments in two scenarios,and compared with low energy adaptive clustering hierarchy(LEACH)and its variant algorithms.Experimental results show that IAFCA surpasses the traditional WSN clustering algorithm in terms of network lifetime and energy efficiency,effectively prolonging the WSN network lifetime and reducing node energy consumption.
作者 常宇飞 宋彬杰 陈欣鹏 朱元兴 CHANG Yufei;SONG Binjie;CHEN Xinpeng;ZHU Yuanxing(Unit 32153, Zhangjiakou 075100, China;Army Artillery and Air Defense Academy, Zhengzhou 450002, China)
出处 《信息工程大学学报》 2022年第1期18-23,共6页 Journal of Information Engineering University
基金 国家自然科学基金资助项目(61901284)。
关键词 无线传感器网络 人工鱼群 模糊C均值 分簇算法 wireless sensor networks artificial fish swarm algorithm fuzzy C-means clustering algorithm
  • 相关文献

参考文献5

二级参考文献27

  • 1徐燕.基于RFID物联网的应用研究[J].微型电脑应用,2011(5):46-48. 被引量:14
  • 2Hcinzelman W, Chandrakasan A, Balakrishnan H. An application-specific protocol architecture for wirelessnicrosensor networks [J]. IEEE Transactions on Wireless Communications, 2002, 1(4) :660-670. 被引量:1
  • 3Ren H , Meng M H. Biologically inspired approaches for wireless sensor networks[C]//. Proceedings of the 2006 IEEE International Conference on Mechatronics and Automation, Luoyang,Henan:IEEE, 2006:762 - 768. 被引量:1
  • 4Pauwels E, Salah A, Tavenard R. Sensor networks for ambient intelligence[C]//proceadings of the IEEE 9th Workshop on Multimedia Signal 2007, MMSP 2007. Grete .. IEEE, 2007 : 13-16. 被引量:1
  • 5Zhou Y, I.iu i3. Two novel swarm intelligence clustering analysis methods[C]ff Proceadings of The Fifth Inter- national Conference on Natural Computation. Tianjing: IEEE, 2009(4) : 497-501. 被引量:1
  • 6Min Xiang, Ren ShiWei, et al. Energy efficient cluste- ring algorithm for maximizing lifetime of wireless sensor networks[J]. Int J Electron Commun, 2010 (64) : 289 -298. 被引量:1
  • 7Ali Chamam. Samuel pierre: a distributed energy-efficient clustering protocol for wireless sensor networks [J]. Computers and Electrical Engineering, 2010(36), 303-312. 被引量:1
  • 8Kemal Akkaya, Fatih Send, Brian McLaughlan. clustering of wireless sensor and actor networks based on sen- sor distribution and connectivity[J]. J Parallel Distrib Comput, 2009(69): 573-587. 被引量:1
  • 9李航,陈后金.物联网的关键技术及其应用前景[J].中国科技论坛,2011(1):81-85. 被引量:144
  • 10唐尧华,黄欢.物联网安全关键技术研究[J].河北省科学院学报,2011,28(4):49-52. 被引量:9

共引文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部