期刊文献+

远程监督的自适应实体抽取

Adaptive entity extraction method based on distant supervision
下载PDF
导出
摘要 针对传统领域知识实体抽取算法主要依赖专家的专业知识,需要的标注工作量较大,本文提出了基于远程监督的实体抽取算法并应用于粮油存储领域。算法在PU学习的框架下,通过判定和分类2个阶段抽取实体,利用双向长短期记忆网络进行二分类实体判别。再通过全连接网络实体类型判别,构建了一个粮油领域知识图谱。研究表明:本算法可以应用于粮油存储领域的知识图谱构建,适用于训练实体样本较少的实体抽取任务,能够缩小使用双向长短期记忆网络算法进行实体抽取任务所需的语料规模,并在使用更小语料规模的情况下达到与经典双向长短期记忆网络算法相当的实体抽取效果。 The traditional domain knowledge entity extraction algorithm mainly depends on the professional knowledge of experts,which requires a large amount of annotation workload and is difficult to apply in new fields.To solve this problem,this paper proposes an entity extraction algorithm based on remote supervision and applies it to the field of grain and oil storage.Under the framework of positive unlabeled learning,the algorithm performs entity extraction through two stages of entity determination and entity classification.First,a bidirectional Long Short-Term Memory neural network(BiLSTM)was used for two-class entity identification.Second,the fully connected network was used for entity type identification.Finally,the algorithm was used to extract entities to construct a knowledge graph in the field of grain and oil storage,which verified the feasibility of the algorithm.This algorithm is suitable for entity extraction tasks with few training entity samples and reduces the corpus size required for the BiLSTM-based algorithm entity extraction.Moreover,it achieves comparable results to those of the classical BiLSTM-based algorithm.
作者 葛亮 张艺璇 李伟平 GE Liang;ZHANG Yixuan;LI Weiping(School of Computer Science and Technology, University of Science and Technology of China, Hefei 230027, China;School of Software and Microelectronics, Peking University, Beijing 100871, China)
出处 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2022年第4期564-571,共8页 Journal of Harbin Engineering University
基金 国家重点研发计划(2020YFC0833301).
关键词 领域知识图谱 本体设计 实体抽取 远程监督 深度学习 PU学习 双向长短期记忆网络 知识图谱构建 domain-specific knowledge graph ontology design entity extraction remote supervision deep learning positive unlabeled learning a bidirectional long short-term memory neural network knowledge graph building
  • 相关文献

参考文献4

  • 1王昊奋,漆桂林,陈华钧主编..知识图谱 方法、实践与应用[M].北京:电子工业出版社,2019:463.
  • 2王若兰..十二五普通高等教育本科国家级规划教材 粮油储藏学 第2版[M].北京:中国轻工业出版社,2016:408.
  • 3国家粮食局职业技能鉴定指导中心组织编写..粮油保管员 初级 中级 高级[M].北京:中国轻工业出版社,2016:486.
  • 4刘峤,李杨,段宏,刘瑶,秦志光.知识图谱构建技术综述[J].计算机研究与发展,2016,53(3):582-600. 被引量:993

二级参考文献9

共引文献992

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部