期刊文献+

基于多源数据的南昌市岗位类型与出行特征研究 被引量:1

Job Types and Travel Characteristics of Nanchang Based on Multi-source Data
下载PDF
导出
摘要 就业岗位是交通需求建模的基础数据,包括不同类型岗位的空间分布及其出行特征。将手机信令大数据与“三调”用地数据、交通模型、“七普”数据、年鉴数据等进行融合分析,实现信令大数据中职住数据、出行数据的精细化扩样及其与地块性质的关联,并进一步对各类就业岗位的出行特征进行研究,包括岗位密度、交通吸引率、通勤距离、通勤速度、交通强度时变等。同时,对南昌市各类就业岗位跨赣江出行特征进行分析。研究成果可作为交通需求建模的基础参数,也可用于交通评价、交通承载力分析等。 Jobs are the basic data for travel demand modeling,including spatial distribution and travel characteristics of different types of jobs.By fusing and analyzing the large data of mobile phone signaling with the data of the 3rd land and space survey,travel model,7th National population census data,Yearbook data,etc.,the detailed sample expansion of occupational and residential data and travel data in signaling big data and their correlation with land property are realized,and the travel characteristics of various employment positions are further studied,including job density,traffic attraction rate,the commuting distance,speed and traffic intensity time-varying,and so on.At the same time,the characteristics of travel across Ganjiang river by various employment posts in Nanchang are analyzed.The research results can be used as basic parameters of travel demand modeling,traffic impact analysis and traffic carrying capacity analysis.
作者 魏星 王进 刘玮 卢亮 WEI Xing;WANG Jin;LIU Wei;LU Liang(Nanchang Urban Planning&Design Institute,Nanchang 330038,China)
出处 《交通与运输》 2022年第2期16-21,共6页 Traffic & Transportation
关键词 手机信令 数据融合 出行特征 交通模型 就业岗位 Mobile signaling Data fusion Travel characteristics Travel model Jobs
  • 相关文献

参考文献7

二级参考文献55

  • 1龚华,柴彦威,刘志林.深圳市民工作日生活活动时空结构特征研究[J].人文地理,2000,15(6):60-66. 被引量:25
  • 2刘杰,胡显标,傅丹丹,陈明威.基于无线通信网络的人员出行信息分析系统设计与应用[J].公路交通科技,2009(S1):151-154. 被引量:16
  • 3杨敏,陈学武,王炜,李文勇.基于人口和土地利用的城市新区交通生成预测模型[J].东南大学学报(自然科学版),2005,35(5):815-819. 被引量:37
  • 4Chen Cynthia, Garling Tommy, Kitamura Ryuichi. Activity rescheduling: reasoned or habitual? [ J ]. Transportation Research Part F, 2004,7(6) : 351 -371. 被引量:1
  • 5Roorda Matthew J, Miller Eric J, Habib Khandker M N. Validation of TASHA: a 24-h activity scheduling microsimulation model [ J ]. Transportation Research Part A, 2008,42 ( 2 ) :360 - 375. 被引量:1
  • 6Ye Xin, Pendyala Ram M, Gottardi Giovanni. An exploration of the relationship between mode choice and complexity of trip chaining patterns [J]. Transportation Research Part B, 2007, 41( 1 ) : 96 - 113. 被引量:1
  • 7Bhat Chandra R, Singh Sujit K, A comprehensive daily activity-travel generation model system for workers [J]. Transportation Research Part A, 2000,34( 1 ) : 1 -22. 被引量:1
  • 8Kasturirangan Krishnan, Pendyala Ram M, A comparison of commuter activity scheduling and sequencing behavior across geographical contexts [C]//The 80th Annual Meeting of the Transportation Research Board, Washington DC, 2001 : 1 - 28. 被引量:1
  • 9Bowman John L, Ben-Akiva Moshe. Activity-based disaggregate travel demand model system with activity schedules [J]. Transportation Research Part A, 2000, 35(1): 1-28. 被引量:1
  • 10Ben-Akiva Moshe, Lerman Steven. Discrete choice analysis : theory and application to travel demand[M]. Cambridge: MIT Press, 1985. 被引量:1

共引文献63

同被引文献1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部