期刊文献+

虚拟CPU负载预测算法性能评估

Performance Evaluation of Virtual CPU Load Prediction Methods
下载PDF
导出
摘要 准确的虚拟CPU负载预测是提高虚拟机CPU调度性能的重要前提,然而,虚拟机操作系统环境下,虚拟CPU负载预测方法需要尽可能简单、有效。针对虚拟机CPU调度应用场景,以实际CPU负载为研究对象,选取五种简单的时间序列预测算法,详细评估其虚拟CPU负载预测性能,为虚拟机CPU调度的实现提供了研究基础。结果表明,平均移动法、线性递减加权平均移动法、一次指数平滑法等具有良好的CPU负载预测性能,并基于反馈控制思想改进了一次指数平滑法,进一步提高了其CPU负载预测性能。 The accurrate virtual CPU(vCPU)load prediction is an important prerequisite to improve the performance of CPU scheduling of the virtual machine.However,in the operation system of virtual machine environment,the vCPU scheduling method should be as simple and effective as possible.The vCPU load prediction performance of five typical methods in the time series analysis area is fully tested with the actual CPU load datasets for the application of CPU scheduling in the virtual machine environmnet.The result shows that the methods of moving average,linear weighted moving average and exponential smoothing are fit for vCPU load prediction.Based on the feedback control principle,the exponential smoothing method is improved and the prediction accuracy is further improved.
作者 万成威 王霞 王猛 WAN Chengwei;WANG Xia;WANG Meng(Beijing Aerospace Control Centre,Beijing 100094,China)
出处 《电讯技术》 北大核心 2022年第4期445-449,共5页 Telecommunication Engineering
关键词 虚拟化云计算 虚拟CPU调度 CPU负载预测 平均移动 指数平滑 virtual cloud computing virtual CPU scheduling CPU load prediction moving average exponential smoothing
  • 相关文献

参考文献9

二级参考文献64

  • 1许力,曾智斌,姚川.云计算环境中虚拟资源分配优化策略研究[J].通信学报,2012,33(S1):9-16. 被引量:26
  • 2[1]CHEN Xi. Engineering Economics[M]. Beijing: China Machine Press, 2000. 被引量:1
  • 3[2]DENG Ju-long. The Basic Method of Grey System[M]. Wuhan: Press of Huazhong University of Science &Technology, 1987. 被引量:1
  • 4[3]LIU Si-feng, GUO Tian-bang, DAND Yao-guo, et al. The Theory and Application of Grey System[M]. Beijing:Science Press, 1991. 被引量:1
  • 5[4]The Statistic Bureau of Inner Mongolia. Statistic Yearbook of Inner Mongolia[M]. Beijing: Statistic Press of China,1981-2001. 被引量:1
  • 6[5]ZHAO Li-ming, DUAN Li-zhong. The analysis of main factors affecting grain yield in Inner Mongolia [J]. Journal of Northwest Sci-Tech University of Agriculture and Forestry(Natural Science Edition), 2001, 29(4): 77-80. 被引量:1
  • 7TIAN W H, ZHAO Y. Resource Scheduling Management of Cloud Computing[M]. Beijing: National Defense Industry Press, 2011. 被引量:1
  • 8Open stack compute administration manual[EB/OL], http://docs. openstack.org. 被引量:1
  • 9HUANG F, LID S. Efficient virtual machine deployment in large scale resource environment[A]. IEEE International Conferenceon Par- allel and Distributed Systems(ICPADS'2010)[C]. Shanghai, China, 2010.752-757. 被引量:1
  • 10KORD N, HAGHIGHI H. An energy-efficient approach for virtual machine placementin cloud based datacenters[A]. Proceeding of the 5th Conference on Information and Knowledge Technology[C]. Shiraz, 2013.44-49. 被引量:1

共引文献131

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部