期刊文献+

Comparing unamended and Fe-coated biochar on removal efficiency of bacteria,microspheres,and dissolved phosphorus in sand filters 被引量:2

原文传递
导出
摘要 The effects of uncoated and Fe-coated biochars(BC)on the removal of bacteria,microspheres,and dissolved reactive phosphorus(DRP)in sand filters were compared.Filters were packed with 1.2 or 2.0-mm sand mixed with 30%(vol/vol)uncoated BC,Fe-coated BC,or a control without BC.Removal of E.coli,Salmonella,and Enterococci increased from 23,42,and 25%in the unamended 1.2-mm sand to 48,80,and 75%in the uncoated BC treatment,though only the increase for Enterococci was significant(p<0.05).For the Fe-coated BC,removal efficiencies were 89,93,and 94%,respectively,which were all significantly(p<0.05)greater than the unamended sand but only the removal of E.coli was significantly greater than the uncoated BC sand filter.For the 2.0-mm sands,the only significant increase in removal following BC addition was observed for Salmonella.Trends in microsphere removal were generally consistent with bacteria.Removal of DRP in the unamended and uncoated BC filters was 33 and 13%(p>0.05),respectively,whereas removal in the Fe-coated BC filters was 98%(p<0.05).Results from batch sorption experiments indicate that both BCs similarly increased bacterial sorption to sand.In contrast,DRP sorption to the unamended and uncoated BC-amended sands were similar(p>0.05)with DRP sorption to the Fe-coated BC-amended sand being significantly greater(p<0.05).Results indicate that Fe-coated BC is more effective at retaining DRP than bacteria and microspheres in sand filters.
机构地区 USDA-ARS
出处 《Biochar》 SCIE 2021年第3期329-338,共10页 生物炭(英文)
基金 This research was supported by the U.S.Department of Agriculture,Agricultural Research Service。
  • 相关文献

参考文献2

二级参考文献2

共引文献17

同被引文献11

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部