摘要
由于传统的被动型入侵防御技术应对大数据时代的各种网络攻击能力不足,研究使用粒子群优化算法优化极限学习机隐含层神经元的内连接权值,解决了随机产生权值造成的分类检测稳定性不足、分类效果差的问题。仿真实验选取CUP99数据集进行性能测试,与经典的极限学习机模型对比发现,该文提出的PSO-ELM算法,其入侵检测的平均识别准确率高达98%以上,且收敛速度快、稳定性较好,明显优于ELM神经网络模型,应对大数据时代的网络入侵效果尤为理想。
出处
《安阳师范学院学报》
2022年第2期35-39,共5页
Journal of Anyang Normal University