期刊文献+

基于SURF的改进FLANN匹配算法 被引量:9

Improved FLANN matching algorithm based on SURF
下载PDF
导出
摘要 在计算机辅助骨科手术系统中应用增强现实技术能帮助医生准确地定位患者的病灶部位,而视频图像的目标跟踪匹配是实现增强现实的关键技术。针对视频图像匹配中SURF(speed up robust features)特征点性能和匹配效率不足的问题,提出一种改进的基于SURF特征点的FLANN(fast library for approximate nearest neighbors)匹配算法。提取SURF关键特征点,改进其描述符算子,使用改进的FLANN算法进行特征点匹配。通过实验分析比较改进与未改进算法的性能,结果表明该方法的稳定性及快速性较好,具有较强的鲁棒性。 The application of augmented reality technology in computer-assisted orthopedic surgery system can help doctors accurately locate the patient’s surgical site,and tracking targets is the key technology for implementing augmented reality in the frame of video.Aiming at the insufficient problem of performance and matching efficiency of SURF in video image matching,an improved FLANN matching algorithm based on SURF feature points was proposed.The SURF feature point was extracted,whose descriptor was improved.The improved FLANN algorithm was used for feature points matching.The performances of the improved algorithm and the original one were compared through experimental analysis.The improved algorithm has better stabi-lity and rapidity with stronger robustness.
作者 张志敏 李彬 田联房 丁焕文 ZHANG Zhi-min;LI Bin;TIAN Lian-fang;DING Huan-wen(School of Automation Science and Engineering,South China University of Technology,Guangzhou 510641,China;School of Medicine,South China University of Technology,Guangzhou 510006,China)
出处 《计算机工程与设计》 北大核心 2022年第4期941-948,共8页 Computer Engineering and Design
基金 广东省基础与应用基础研究基金项目(2019A1515011148) 中央高校基本科研业务费专项基金项目(2019MS139) 广东省科技计划基金项目(2017A020215164)。
关键词 增强现实技术 计算机辅助骨科手术 加速鲁棒特征 改进的快速最近邻匹配算法 三维重建 augmented reality computer-assisted orthopedic surgery speed up robust features improved FLANN algorithm 3D reconstruction
  • 相关文献

参考文献2

二级参考文献32

  • 1王俊卿,黄莎白,史泽林.基于复数小波能量特征和支持向量机的图像匹配算法[J].中国图象图形学报(A辑),2004,9(9):1075-1079. 被引量:5
  • 2Harris C, Stephens M. A combined comer and edge detector [C]//Manchester: Proceedings of the 4th Alvey Vision Conference. Manchester, UK, 1988: 147-151. 被引量:1
  • 3Lowe D G. Distinctive image features form scale-invariant keypoints [J]. International Journal of Computer Vision, 2004, 60(2): 91-110. 被引量:1
  • 4Bay H, Tuytelaars T, Van Gool L. SURF: speeded up robust features [C]//Proceedings of European Conference on Computer Vision. Graz, Austria, 2006: 404-407. 被引量:1
  • 5Lowe D G. Object recognition from local scale-invariant features [C]//International Conference on Computer Vision. Corfu, Greece, 1999: 1150-1157. 被引量:1
  • 6Brown M, Lowe D. Invariant features from interest point groups [C]//British Machine Vision Conference. Cardiff, Wales, 2002: 656-665. 被引量:1
  • 7Muja M, Lowe D G. Fast approximate nearest neighbors with automatic algorithm configuration [C]//Proceedings of IEEE Conference on Computer Vision Theory and Applications. Lisbon, Portugal: IEEE Computer Society, 2009: 331-340. 被引量:1
  • 8Chum O, Philbin J, Zisserman A. Near duplicate image detection: min-hash and tf-idf weighting [C]// Proceedings of the 19th British Machine Vision Conference. London, UK, 2008: 493-502. 被引量:1
  • 9高健,黄心汉,彭刚,王敏,吴祖玉.一种简化的SIFT图像特征点提取算法[J].计算机应用研究,2008,25(7):2213-2215. 被引量:31
  • 10洪小伟,石守东,康丹.一种基于小波模极大值的图像特征匹配算法[J].宁波大学学报(理工版),2009,22(1):66-69. 被引量:3

共引文献63

同被引文献107

引证文献9

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部