期刊文献+

Novel Au nanoparticles-inlaid titanium paper for PEM water electrolysis with enhanced interfacial electrical conductivity 被引量:3

下载PDF
导出
摘要 Proton-exchange membrane water electrolysis(PEM WE)is a particularly promising technology for renewable hydrogen produc-tion.However,the excessive passivation of the gas diffusion layer(GDL)will seriously affect the high surface-contact resistance and result in energy losses.Thus,a mechanism for improving the conductivity and interface stability of the GDL is an urgent issue.In this work,we have prepared a hydrophilic and corrosion resistant conductive composite protective coating.The polydopamine(PDA)film on the Ti surface,which was obtained via the solution oxidation method,ensured that neither micropores nor pinholes existed in the final hybrid coatings.In-situ reduced gold nanoparticles(AuNPs)improved the conductivity to achieve the desired interfacial contact resistance and further enhanced the corrosion resistance.The surface composition of the treated samples was investigated using scanning electron microscopy(SEM),transmis-sion electron microscopy(TEM),X-ray diffraction(XRD),and Fourier transform infrared spectroscopy(FTIR).The results indicated that the optimized reaction conditions included a pH value of 3 of HAuCl_(4) solution with PDA deposition(48 h)on papers and revealed the lowest con-tact resistance(0.5 mΩ·cm^(2))and corrosion resistance(0.001μA·cm^(−2))in a 0.5 M H_(2)SO_(4)+2 ppm F−solution(1.7 V vs.RHE)among all the modified specimens,where RHE represents reversible hydrogen electrode.These findings indicated that the Au-PDA coating is very appropriate for the modification of Ti GDLs in PEM WE systems.
出处 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2022年第5期1090-1098,共9页 矿物冶金与材料学报(英文版)
基金 supported by the National Key Research and Development Program of China(No.2018 YFB1502403)。
  • 相关文献

参考文献2

二级参考文献6

共引文献5

同被引文献26

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部