摘要
面向知识库的自动问答是自然语言处理的一项重要任务,其旨在对用户提出的自然语言形式问题给出精练、准确的回复。目前由于缺少数据集,存在特征不一致等因素,导致难以使用通用的数据和方法实现领域知识库问答。因此,该文将“问题意图”视作不同领域问答可能存在的共同特征,将“问题”与三元组知识库中“关系谓词”的映射过程作为问答核心工作。为了考虑多种层次的语义并避免重要信息的损失,该文分别将“基于门控卷积的深层语义”和“基于交互注意力机制的浅层语义”通过门控感知机制相融合。在NLPCC-ICCPOL 2016 KBQA数据集上的实验表明,该文方法与现有的CDSSM和BDSSM方法相比,效能有明显提升。此外,该文通过构造天文常识知识库,将问题与关系谓词映射模型移植到特定领域,结合Bi-LSTM-CRF模型构建了天文常识自动问答系统。
Knowledge Base Question Answer(KBQA) is a natural language processing task to generate refined and accurate responses to natural language questions raised by users. Therefore, this paper treats the question intent identification as the common issue for KBQA of various domains, and the mapping between the question and the predicate of the tuple in the knowledge base as the key issue. Specifically, we combine the "gated convolution for deep semantics" and " interactive attention mechanism for shallow semantics" into a unified framework via the gated perception mechanism. Experiments on NLPCC-ICCPOL 2016 KBQA dataset show that our proposed method significantly outperforms the existing CDSSM and BDSSM. Besides, we adapt our method for a commonsense automatic question answering system via a commonsense knowledge base of astronomy.
作者
李豫
周光有
LI Yu;ZHOU Guangyou(School of Computer Science,Central China Normal University,Wuhan,Hubei 430079,China)
出处
《中文信息学报》
CSCD
北大核心
2022年第2期49-57,共9页
Journal of Chinese Information Processing
基金
国家自然科学基金(61972173)。
关键词
知识库
属性映射
深层语义
knowledge base
property mapping
deep semantic