期刊文献+

基于质量新闻的工业品质量风险分析 被引量:2

Leverage Quality News to Analyze Quality Risk of Industry Products
原文传递
导出
摘要 首先分析了当前在市场质量监管领域开展质量风险分析和产品伤害分析的主要做法,再以重点工业品为研究对象,使用中国质量新闻网民生新闻数据,创建风险词集,讨论通过训练词嵌入模型进行质量风险计算的方法.通过计算各类词向量之间的余弦相似度,近似得出不同风险类型下,各产品和生产企业的质量风险情况.并结合国家和各省、直辖市历年来产品质量抽查报告中各产品的不合格项情况,对实验结果进行验证和补充分析.最后根据产品可能造成的伤害程度,进行质量风险评估.文章分析结果可为消费提示、质量信用评价提供一定支撑. This paper firstly analyzes the main methods of quality risk analysis and product injury analysis in the field of market quality supervision,and then focuses on several industrial goods as the research object and creates risk word set,through the text data of people’s livelihood news from China Quality News Net,discusses a method of quality risk analysis of key industrial products based on several word embedding models.By calculating the cosine similarity between specific product and each risk word vectors,the quality risk level of each product and manufacturer under different risk types is approximately obtained.The unqualified items in product quality inspection reports,which are from the State Administration for Market Regulation and the same department in each province or municipality directly under the central government over the years,are taken to validate and supplementary with the results of the experiment.Finally,according to the extent of possible injury,we further carry out quality risk assessment to provide suggestions for consumption tips and quality credit assessment.
作者 冷洁 唐锡晋 闫志华 彭琴 LENG Jie;TANG Xijin;YAN Zhihua;PENG Qin(Academy of Mathematics and Systems Science,Chinese Academy of Sciences,Beijing 100190;University of Chinese Academy of Sciences,Beijing 100049;China National Institute of Standardization,Beijing 100191)
出处 《系统科学与数学》 CSCD 北大核心 2021年第12期3405-3421,共17页 Journal of Systems Science and Mathematical Sciences
基金 国家自然科学基金(71731002,71971190)资助课题。
关键词 质量风险 词嵌入 word2vec GLOVE fastText Quality risk word embedding word2vec GloVe fastText
  • 相关文献

参考文献27

二级参考文献61

共引文献78

同被引文献23

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部