摘要
文中考虑了三维非齐次不可压缩Navier-Stokes-Vlasov方程组在移动区域上弱解的整体存在性,此结果是将文献[7]中齐次不可压缩情形推广到非齐次不可压缩情形。假设流体的初始密度有下界,基于Schaefer不动点定理和弱收敛方法证明了三维非齐次不可压缩Navier-Stokes-Vlasov方程组在移动区域上弱解的整体存在性。
In this paper,we consider the global existence of weak solutions of three-dimensional nonhomogeneous incompressible Navier-Stokes-Vlasov equations in a time-dependent domain.The global existence results of weak solutions of homogeneous incompressible Navier-Stokes-Vlasov equations in literature[7]are generalized,and on the promise that the initial density of the fluid has a lower bound,the global existence of solutions to the three-dimensional nonhomogeneous incompressible Navier-Stokes-Vlasov equations in a time-dependent domain is obtained by using Schaefer′s fixed point theorem and the weak convergence method.
作者
张师豪
王丽真
ZHANG Shihao;WANG Lizhen(Nonlinear Studies of Science, Northwest University, Xi′an 710127, China;School of Mathematics, Northwest University, Xi′an 710127, China)
出处
《西北大学学报(自然科学版)》
CAS
CSCD
北大核心
2022年第2期288-297,共10页
Journal of Northwest University(Natural Science Edition)
基金
国家自然科学基金(11771352,11871396)
陕西省自然科学基金(2020JM-431)。