摘要
功能近红外光谱术(functional near infrared spectroscopy,fNIRS)是一种基于大脑血液光学吸收测量的无创神经成像技术,但目前尚未有关于脑激活程度与时间的研究。通过对特定运动想象任务下近红外数据的分析,探讨了脑激活程度与任务重复时间之间的关系。共有20名被试参与实验研究,在数据采集和预处理后,通过绘制各实验数据的地形图及脑激活程度随实验天数变化的折线图,探究了实验过程中脑激活程度的变化。随着实验的进行,每种任务引起的脑激活程度逐渐下降,下降速度与任务难度有关,任务难度越大,则脑激活程度下降到较低水平所用的时间越长,一般在三天后达到较为稳定的状态。因此,在进行脑机接口(brain-computer interface,BCI)实验研究时,需要考虑随时间变化的脑功能活动的影响。研究结果揭示了实验范式设计及实验进程对采集数据的影响,对实验数据的分析有一定辅助作用。
Objective Functional near infrared spectroscopy(fNIRS) is a non-invasive and reliable brain function detection technology, while brain-computer interface(BCI) refers to the conversion of brain activities related to the subject’s intention into commands for communication or control with external devices. fNIRS has many advantages as a brain function detection method of BCI. In recent years, more and more research groups have chosen to use or jointly use fNIRS as a detection method of BCI. However, the spontaneous activation signal of the motor cortex detected by fNIRS is weak and the individual differences cannot be ignored, so the recognition accuracy in BCI is lower than that of the traditional EEG method. The potential of fNIRS in BCI is far from being exploited. At present, there is no literature on the relationship between the degree of brain activation and the experimental time based on fNIRS. Considering that the measurement principle of fNIRS is related to the body’s blood oxygen activation, the blood oxygen activation may be related to the number of experimental repetitions. The research team selects the commonly used motor imagery brain signals as the research object and explores the relationship between fNIRS brain activation and experimental time.Methods We recruit 20 healthy volunteers to participate in this study. The experimental process and the experiment are shown in Figs. 1(a) and 1(b), respectively. In this study, a self-developed fiber optic f NRSI brain function imaging instrument [Fig. 2(c)] is used to record the f NRSI signals. The offline analysis of the f NRSI signals is carried out by Matlab. After segmenting it, the modified Beer-Lambert law is used to calculate the changes of hemorrhagic oxygen parameters. After removing the physiological interference, using the number of days as the independent variable, we calculate the average of the daily signals of all channels in each paradigm. Results and Discussions The data results are displayed in the forms of topographical maps and broken
作者
高晨阳
修嘉
李婷
Gao Chenyang;Xiu Jia;Li Ting(Institute of Biomedical Engineering,Chinese Academy of Medical Sciences,Tianjin 300192,China;Chiyiese Institute for Brain Research,Beijing 102206,China)
出处
《中国激光》
EI
CAS
CSCD
北大核心
2022年第5期198-206,共9页
Chinese Journal of Lasers
基金
国家自然科学基金面上项目(81971660)
四川国际合作科技计划(2021YFH0004)
中国医学科学院医学与健康科技创新工程(2021-I2M-1-042,2021-I2M-1-058)
天津杰出青年基金(20JCJQIC00230)
北京脑科学与类脑研究中心科研合作项目(2020-NKX-XM-14)
京津冀基础研究合作专项[19JCZDJC65500(Z)]
中央高校基本科研业务费专项资金资助(3332019101)。
关键词
医用光学
功能近红外光谱术
脑激活程度
脑机接口
运动想象
适应性
medical optics
functional near infrared spectroscopy
degree of brain activation
brain-computer interface
motor imagery
adaptability