期刊文献+

一类具有转移条件的四阶微分算子特征值关于边界的依赖性 被引量:1

Dependence of eigenvalues of a class of fourth-order differential operators with transition conditions on boundary
下载PDF
导出
摘要 研究带转移条件的四阶微分方程边值问题的特征值对分离型边界条件的可微依赖性,并给出了特征值关于问题所满足的微分表达式. The dependence of eigenvalues on the boundary for a class of fourth-order Sturm-Liouville problem with separate boundary conditions and transition conditions is considered.The differential expressions of the eigenvalues for the boundary conditions are given.
作者 王琦 许美珍 WANG Qi;XU Meizhen(School of Science,Inner Mongolia University of Technology,Hohhot 010051,China)
出处 《内蒙古工业大学学报(自然科学版)》 2022年第1期6-13,共8页 Journal of Inner Mongolia University of Technology:Natural Science Edition
基金 国家自然科学基金项目(11661059) 内蒙古自然科学基金项目(2021MS01020) 内蒙古自治区规划课题(NGJGH2018076)。
关键词 四阶边值问题 转移条件 边界条件 特征值 微分表达式 fourth-order boundary value problem transition conditions boundary conditions eigenvalue differential expression
  • 相关文献

参考文献4

二级参考文献26

  • 1M.KADAKAL,O.Sh.MUKHTAROV.Discontinuous Sturm-Liouville Problems Containing Eigenparameter in the Boundary Conditions[J].Acta Mathematica Sinica,English Series,2006,22(5):1519-1528. 被引量:15
  • 2Dauge M, Helffer B. Eigenvalues variation, I. Neumann problem for Sturm-Liouville operators[J]. Differ. Equa., 1993, 104: 243-262. 被引量:1
  • 3Dauge M, Helffer B. Eigenvalues variation, II. Neumann problem for Sturm-Liouville operators[J]. Differ. Equa., 1993, 104: 263-297. 被引量:1
  • 4Kong Q, Zettl A. Dependence of eigenvalues of Sturm-Liouville problems on the boundary[J]. J. Differ. Equa., 1996, 126: 389-407. 被引量:1
  • 5WANG A P, SUN J, Zettle A. The classification of self-adjoint boundary conditions: separated coupled and mixed[J]. J. Funct. Anal., 2008, 255: 1554-1573. 被引量:1
  • 6GE S Q, WANG W Y, SUO J Q. Dependence of eigenvalues of a class of Fourth-order Sturm-liouville problems on the boundary[J]. Appl. Math. Comput., 2013, 220: 268-276. 被引量:1
  • 7Richard Courant, D. Hilbert, Methods of Mathematical Physics, Vol. I[M]. New York: Wiley, 1989. 被引量:1
  • 8Kong Q, WU H, Zettl A. Dependence of the nth Sturm-Liouville eigenvalues on the problem[J]. J. Differ. Equa., 1999, 156: 328-354. 被引量:1
  • 9Kong Q, WU H, Zettl A. Geometric aspects of Sturm-Liouville problems. I. Structures on spaces of boundary conditions[J]. Proc. R. Soc. Edinb., 2000, 130: 561-589. 被引量:1
  • 10CAO X, Kong Q, WU H, Zettl A. Sturm-Liouville problems whose leading coefficient function changes sign[J]. Can. J. Math., 2003, 55: 724-749. 被引量:1

共引文献9

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部