期刊文献+

深空探测重力模拟飞行器方案设想

The Conception of Gravity Simulated Spacecraft for Deep-Space Exploration
下载PDF
导出
摘要 为解决失重环境对航天员生理健康的影响,在调研国内外重力飞行器研究现状的基础上,结合重力模拟飞行器的原理及人造重力舒适度影响因素,提出了一种通过自旋产生人造重力的深空探测飞行器方案设想。最后给出了重力模拟飞行器建设的实施规划、总体方案、在轨组装流程及技术难点。深空探测重力模拟飞行器稳定运转可为空间工作生活的航天员提供与地面无异的重力环境,将为执行深空探测任务提供必要的环境保障。 In order to solve the impact of weightlessness on the physiological health of astronauts,a kind of deep space exploration spacecraft program to generate artificial gravity by spinning is proposed in this paper,which is based on the investigation of the research status of gravity spacecraft at home and abroad.Based on the investigation of the research status of gravity spacecraft at home and abroad,the principle of gravity simulation spacecraft and the influencing factors of artificial gravity comfort are analyzed,and a kind of deep space exploration spacecraft program to generate artificial gravity by spinning is proposed in this paper,which can solve the impact of weightlessness environment on astronauts physiological health.Finally,the implementation plan,overall scheme,in-orbit assembly process and technical difficulties of gravity simulated spacecraft are presented.The stable operation of the gravity spacecraft for deep-space exploration can generate the same gravity environment as the ground for astronauts working and living in space,which will provide necessary environmental guarantee for deep-space exploration missions.
作者 杨自鹏 张群 东华鹏 杜大程 毛宇飞 YANG Zipeng;ZHANG Qun;DONG Huapeng;DU Dacheng;MAO Yufei(Beijing Institute of Astronautical Systems Engineering,Beijing 100076,China;Beijing Aerospace Ares Technology Co.,Ltd.,Beijing 100176,China)
出处 《宇航总体技术》 2022年第2期30-36,共7页 Astronautical Systems Engineering Technology
基金 航天系统部专用技术(30506050301)。
关键词 失重环境 人造重力 重力飞行器 深空探测 Weightlessness environment Artificial gravity Gravity spacecraft Deep-space exploration
  • 相关文献

参考文献8

二级参考文献78

  • 1袁明,姜世忠,李志利,袁敏,汪德生.尾吊后ERK在大鼠股动脉的相性和紧张性收缩反应中的作用[J].现代临床医学生物工程学杂志,2006,12(3):257-260. 被引量:2
  • 2崔乃刚,王平,郭继峰,程兴.空间在轨服务技术发展综述[J].宇航学报,2007,28(4):805-811. 被引量:163
  • 3[2]CRC Handbook of Thermoelectrics,Edited by D.M.Rowe,CRC Press LLC,1995. 被引量:1
  • 4[3]Pustovalov A A.Nuclear thermoelectric power units in Russia,USA and European Space Agency research programs[C]//Heinrich A,ed.Proceedings of Sixteenth International Conference on Thermoelectrics.IEEE Catalog Number 97TH8291,1997:559-562. 被引量:1
  • 5[4]Hunt M E.High efficiency dynamic radioisotope power systems for space exploration-a status report[C]//Proceedings of the 28 th Intersociety Energy Conversion Engineering Conference,American Chemical Society,1993:1.445-1.449. 被引量:1
  • 6[5]Benett G L,Skrabek E A.Power performance of U.S.space radioisotope thermoelectric generators[C]//Proceedings of Fifteenth International Conference on Thermoelectrics,IEEE Inc.1996:357-372. 被引量:1
  • 7[6]El-Genk M S,Energy Conversion Technologies for Advanced Radioisotope and Nuclear Reactor Power Systems for Future Planetary Exploration[C]//Proceedings of 21st International Conference on Thermoelectrics,Long Beach,USA,2002:375-380. 被引量:1
  • 8[7]Wong W A.Advanced Radioisotope Power Conversion Technology Research and Development,NASA/TM-2004-213352. 被引量:1
  • 9[8]Advanced Radioisotope-power Technologies R&D Team Selected,NASA press release,2003. 被引量:1
  • 10Solomon S C, McNutt R L, Gold R E, et al. MESSENGER mission overview. Space Sci Rev, 2007,131: 3-39. 被引量:1

共引文献81

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部