期刊文献+

结合感受野增强和全卷积网络的场景文字检测方法 被引量:4

Text Detection in Natural Scene Images Based on Enhanced Receptive Field and Fully Convolution Network
下载PDF
导出
摘要 自然场景图像质量易受光照及采集设备的影响,且其背景复杂,图像中文字颜色、尺度、排列方向多变,因此,自然场景文字检测具有很大的挑战性.本文提出一种基于全卷积网络的端对端文字检测器,集中精力在网络结构和损失函数的设计,通过设计感受野模块并引入Focalloss、GIoUloss进行像素点分类和文字包围框回归,从而获得更加稳定且准确的多方向文字检测器.实验结果表明本文方法与现有先进方法相比,无论是在多方向场景文字数据集还是水平场景文字数据集均取得了具有可比性的成绩. The quality of natural scene images is influenced easily by the shooting environment and conditions,and scene image background is relatively complex and has a strong interference for detection,besides,text in scene images may have different colors,fonts,sizes,directions,languages and so on,all these situations make natural scene text detection be still a challenging research topic.This paper proposes an end-to-end text detector based on fully convolution network.We focus on the design of the network structure and the loss function,through adding the enhanced receptive field module and introducing Focalloss,GIoUloss for pixels classification and text boxes regression respectively,we gain a more stable accurate multi-oriented text detector.Our method provides promising performance compared to the recent state-of-the art methods on both the multi-oriented scene text dataset and horizontal text dataset.
作者 李晓玉 宋永红 余涛 LI Xiao-Yu;SONG Yong-Hong;YU Tao(School of Software Engineering,Xi'an Jiaotong University,Xi'an 710049;College of Artificial Inteligence,Xi'an Jiao-tong University,Xi'an 710049)
出处 《自动化学报》 EI CAS CSCD 北大核心 2022年第3期797-807,共11页 Acta Automatica Sinica
基金 陕西省自然科学基础研究计划(2018JM6104) 国家重点研究开发计划(017YFB1301101)资助。
关键词 感受野增强 Focalloss GIo Uloss 全卷积网络 Receptive field enhanced module Focalloss GIoUloss full convolution network
  • 相关文献

参考文献3

二级参考文献155

  • 1钱跃良,林守勋,刘群,刘洋,刘宏,谢萦.863计划中文信息处理与智能人机接口基础数据库的设计和实现[J].高技术通讯,2005,15(1):107-110. 被引量:4
  • 2周新伦,李锋,华星城,韦剑.甲骨文计算机识别方法研究[J].复旦学报(自然科学版),1996,35(5):481-486. 被引量:21
  • 3王嘉梅,文永华,李燕青,高雅莉.基于图像分割的古彝文字识别系统研究[J].云南民族大学学报(自然科学版),2008,17(1):76-79. 被引量:10
  • 4Hildebrandt T H, Liu W T. Optical recognition of handwritten Chinese characters:advances since 1980. Pattern Recognition, 1993, 26(2):205-225. 被引量:1
  • 5Suen C Y, Berthod M, Mori S. Automatic recognition of handprinted characters——the state of the art. Proceedings of the IEEE, 1980, 68(4):469-487. 被引量:1
  • 6Tai J W. Some research achievements on Chinese character recognition in China. International Journal of Pattern Recognition and Artificial Intelligence, 1991, 5(01n02):199-206. 被引量:1
  • 7Liu C L, Jaeger S, Nakagawa M. Online recognition of Chinese characters:the state-of-the-art. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(2):198-213. 被引量:1
  • 8Cheriet M, Kharma N, Liu C L, Suen C Y. Character Recognition Systems:a Guide for Students and Practitioners. USA:John Wiley & Sons, 2007. 被引量:1
  • 9Plamondon R, Srihari S N. Online and off-line handwriting recognition:a comprehensive survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(1):63-84. 被引量:1
  • 10Dai R W, Liu C L, Xiao B H. Chinese character recognition:history, status and prospects. Frontiers of Computer Science in China, 2007, 1(2):126-136. 被引量:1

共引文献169

同被引文献21

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部