期刊文献+

线粒体相关内质网膜及胰岛素抵抗的运动干预研究进展 被引量:1

Research Progress in Mitochondria Associated Membranes,Insulin Resistance and Exercise Intervention
下载PDF
导出
摘要 为揭示线粒体相关内质网膜(mitochondria associated membranes,MAMs)介导运动干预调控胰岛素抵抗的机制,综述MAMs的结构和功能、MAMs与胰岛素抵抗的联系,以及运动通过介导MAMs组分改善机体胰岛素抵抗的研究进展。结果表明,运动主要通过3条途径调控MAMs,改善胰岛素抵抗:1)Ca2+调控;2)对MAMs结构的修饰;3)调控MAMs处胰岛素信号相关分子。目前仍有4方面问题亟待解决:1)增加源于肝脏以外器官的证据支持;2)有针对性地检测不同细胞器/细胞结构中MAMs关联分子的表达;3)进一步探索MAMs结构与胰岛素抵抗的关系;4)揭示线粒体和内质网间距离与胰岛素抵抗的联系。 In order to reveal the mechanism of mitochondria associated membranes(MAMs)mediated regulation of insulin resistance by exercise intervention, the structure and functions of MAMs, association between MAMs and insulin resistance, as well as improvement of insulin resistance by exercise via MAMs were reviewed. The results showed that exercise regulated MAMs and insulin resistance through the following three ways: 1) Calcium regulation;2) modulation of the structure of MAMs;3) regulating insulin signaling related molecules located at MAMs. There are four research questions that need to be resolved: 1) Looking for evidence based on organs other than the liver;2) examining the expressions of MAMs associated molecules in different organelles/cellular structures;3) further exploring the association between MAMs structure and insulin resistance;4) investigating the association between mitochondria endoplasmic reticulum(ER) distance and insulin resistance.
作者 孙易 丁树哲 SUN Yi;DING Shuzhe(Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Educa‐tion,East China Normal Universi‐ty,Shanghai 200241,China;College of Physical Education and Health,East China Normal Uni‐versity,Shanghai 200241,China)
出处 《中国体育科技》 CSSCI 北大核心 2022年第3期76-81,共6页 China Sport Science and Technology
基金 国家自然科学基金项目(31600967) 中央高校基本科研业务费专项资金资助 青少年健康评价与运动干预教育部重点实验室建设项目(11000-30190-513300/006)。
关键词 线粒体相关内质网膜 胰岛素抵抗 肝脏 运动 MAMs insulin resistance liver exercise
  • 相关文献

参考文献3

二级参考文献38

  • 1邵建林,彭沛华,周银燕,衡新华.HO-1对氧糖剥夺海马神经元线粒体运动调节蛋白的影响[J].昆明医科大学学报,2012,33(4):4-7. 被引量:1
  • 2Gamboa JL, Andrade FH. Muscle endurance and mito- chondrial function after chronic normobaric hypoxia: con- trast of respiratory and limb muscles [ J ]. Pflugers Arch, 2012, 463(2): 327-338. 被引量:1
  • 3Meyer A, Zoll J, Charles AL, et al. Skeletal muscle mito- chondrial dysfunction during chronic obstructive pulmonary disease: central actor and therapeutic target [ J ]. Exp Physiol, 2013, 98(6) : 1063-1078. 被引量:1
  • 4Zhu J, Wang KZ, Chu CT. After the banquet: mitochon- drial biogenesis, mitophagy, and ceil survival [ J ]. Auto- phagy, 2013, 9(11) : 1663-1676. 被引量:1
  • 5Vogt M, Hoppeler H. Is hypoxia training good for muscles and exercise performance? [ J ]. Prog Cardiovasc Dis, 2010, 52(6): 525-533. 被引量:1
  • 6Bo H, Jiang N, Ma G, et al. Regulation of mitochondrial uncoupling respiration during exercise in rat heart: role of reactive oxygen species (ROS) and uncoupling protein 2 [J]. Free Radic Biol Med, 2008, 44(7) : 1373-1381. 被引量:1
  • 7Gamboa JL, Andrade FH. Mitochondrial content and dis- tribution changes specific to mouse diaphragm after chronic normobaric hypoxia[J]. Am J Physiol Regul Integr Comp Physiol, 2010, 298 (3) : R575-R583. 被引量:1
  • 8Levett DZ, Radford E J, Menassa DA, et al. Acclimatiza- tion of skeletal muscle mitochondria to high-altitude hypox- ia during an ascent of Everest[ J]. FASEB J, 2012, 26 (4) : 1431-1441. 被引量:1
  • 9Regnauh TR, Zhao L, Chiu JS, et al. Peroxisome prolif- erator-activated receptor -beta/deha, -gamma agonists and resveratrol modulate hypoxia induced changes in nuclear receptor activators of muscle oxidative metabolism [ J ]. PPAR Res, 2010, 2010: 129173. 被引量:1
  • 10Zhang H, Bosch-marce M, Shimoda LA, et al. Mitochon- drial autophagy is an HIF-l-dependent adaptive metabolic response to hypoxia[ J]. J Biol Chem, 2008, 283 (16) : 10892-10903. 被引量:1

共引文献25

同被引文献20

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部