期刊文献+

Memory dependent anomalous diffusion in comb structure under distributed order time fractional dual-phase-lag model

原文传递
导出
摘要 This paper considers a novel distributed order time fractional dual-phase-lag model to analyze the anomalous diffusion in a comb structure,which has a widespread application in medicine and biology.The newly proposed constitution model is a generalization of the dual-phase-lag model,in which a spectrum of the time fractional derivatives with the memory characteristic governed by the weight coefficient is considered and the formulated governing equation contains both the diffusion and wave characteristics.With the L1-formula to discrete the time Caputo fractional derivatives,the finite difference method is used to discretize the model and the related numerical results are plotted graphically.By adding a source term,an exact solution is defined to verify the correctness of the numerical scheme and the convergence order of the error in spatial direction is presented.Finally,the dynamic characteristics of the particle distributions and the effects of involved parameters on the total number of particles in the x-direction are analyzed in detail.
出处 《International Journal of Biomathematics》 SCIE 2021年第8期33-53,共21页 生物数学学报(英文版)
基金 The work is supported by the Project funded by the National Natural ScienceFoundation of China(No.11801029) Fundamental Research Funds for the Cen-tral Universities(FRF-TP-20-013A2) author Feng wishes to acknowledge thesupport from the National Natural Science Foundation of China(NNSFC)(No.11801060).
  • 相关文献

参考文献1

二级参考文献50

  • 1Wang L Q, Zhou X S and Wei X H 2008 Heat Conduction (Berlin: Springer). 被引量:1
  • 2Tzou D Y 1995 ASMEJ. Heat Transfer 117 8. 被引量:1
  • 3Tzou D Y 1997 Macro- to Micro-scale Heat Transfer: the Lagging Behavior (New York: Taylor & Francis). 被引量:1
  • 4Shen B and Zhang P 2008 Int. J. HeatMass Transfer 51 1713. 被引量:1
  • 5Xu F, Lu T J Seffen K A and Ng E Y K 2009 Appl. Mech. Rev. 62 050801. 被引量:1
  • 6Tzou D Y and Chiu K S 2001 Int. J. Heat Mass Transfer 44 1725. 被引量:1
  • 7Liu K C 2005 J. Phys. D: Appl. Phys. 38 3722. 被引量:1
  • 8Mitra K, Kumar S, Vedavarz A and Moallemi M K 1995 ASMEJ. Heat Transfer 117 568. 被引量:1
  • 9Antaki P J 2005 ASMEJ. Heat Transfer 127 189. 被引量:1
  • 10Podlubny I 1999 Fractional Differential Equations (New York: Aca- demic Press). 被引量:1

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部