期刊文献+

基于图正则化的贝叶斯宽度学习系统 被引量:3

Graph-regularized Bayesian broad learning system
下载PDF
导出
摘要 作为一种前馈神经网络,宽度学习系统因其精度高、训练速度快且能有效代替深度学习方法而备受研究者的关注。然而,宽度学习系统存在对网络中的特征节点个数比较敏感且求伪逆方式易使模型出现过拟合等问题。为此,在宽度学习系统中引入贝叶斯推断和图正则化。一方面,通过引入先验知识进行贝叶斯学习可以有效提高权重的稀疏性,提高模型的稳定性;另一方面,加入图正则化可充分考虑数据内在的图信息,进一步提高模型的泛化能力。在UCI数据集和NORB数据集上对所提模型进行性能评估,实验结果表明,所提的基于图正则化的贝叶斯宽度学习系统模型能进一步提高宽度学习系统的分类精度且具有更好的稳定性。 As a feed forward neural network,broad learning system(BLS)has attracted much attention because of its high accuracy,fast training speed,and the ability to effectively replace deep learning methods.However,it is sensitive to the number of feature nodes and the pseudo-inverse method is likely to result in the problem of over fitting for BLS mod-el.To address the above issues,Bayesian inference and graph regularization was introduced in to the BLS model.By in-troducing the prior knowledge for Bayesian learning,the sparsity of the weights and the stability of the model could be effectively improved;while the graph information mining from the data could be fully considered to improve the genera-lization ability of the model by regularization.The UCI and NORB dataset were adopted for evaluating the performance of the proposed model.The experiment results demonstrated that the proposed graph-regularized Bayesian broad learning system model can further improve the accuracy of classification and has better stability.
作者 段俊伟 许林灿 全渝娟 陈龙 陈俊龙 DUAN Junwei;XU Lincan;QUAN Yujuan;CHEN Long;CHEN C.L.Philip(College of Information Science and Technology,Jinan University,Guangzhou 510632,China;Faculty of Science and Technology,University of Macao,Macao 999078,China;School of Computer Science and Engineering,South China University of Technology,Guangzhou 510006,China)
出处 《智能科学与技术学报》 2022年第1期109-117,共9页 Chinese Journal of Intelligent Science and Technology
基金 国家重点研发计划基金资助项目(No.2018YFC2002500) 广东省基础与应用基础研究基金资助项目(No.2021A1515011999) 广州市科技创新发展专项资金项目(No.201902010041)。
关键词 宽度学习系统 贝叶斯推断 图正则化 模式识别 board learning system Bayesian inference graph regularization pattern recognition
  • 相关文献

参考文献11

二级参考文献62

  • 1朱元珍,张辉仁,祝英,蒲凌奎,蒲训.古今毒蘑菇识别方法评价[J].甘肃科学学报,2008,20(4):40-44. 被引量:14
  • 2韩鸿哲,王志良,刘冀伟,李正熙,陈锋军.基于线性判别分析和支持向量机的步态识别[J].模式识别与人工智能,2005,18(2):160-164. 被引量:12
  • 3王定成,姜斌.在线稀疏最小二乘支持向量机回归的研究[J].控制与决策,2007,22(2):132-137. 被引量:24
  • 4Banko M, Brill E. Scaling to very large corpora for natural language disambiguation. Proceedings of the 39th Annual Meeting on Association for Computational Linguistics (ACL), Toulouse, France, 2001:26-33. 被引量:1
  • 5Brants T, Popat C A, Xu P, et al. Large language models in machine translation. Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Language Learning. Prague. Czech Republic, 2007:858-867. 被引量:1
  • 6Wang Y, Zhao X M, Sun Z L, et al. Peacock: learning long-tail topic features for industrial applications. ACM Transactions on Intelligent Systems and Technology, 2014, 9(4). 被引量:1
  • 7CCF Task Force on Big Data. Forecast for the development trend of big data in 2015. Communications of the China Computer Federation (CCCF), 2015, 11(1): 48-52. 被引量:1
  • 8Gonzalez J E. Emerging systems for large-scale machine learning. Proceedings of Tutorial on International Conference for Machine Learning(ICML) 2014, Beijing, China, 2014. 被引量:1
  • 9CCF Task Force on Big Data. White paper of China's big data technology and industrial development in 2014. Proceedings of Big Data Conference China, Beijing, China, 2014. 被引量:1
  • 10中国计算机学会大数据专家委员会.2015年中国大数据发展趋势预测.中国计算机学会通讯,2015,11(1):48-52. 被引量:1

共引文献295

同被引文献18

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部