期刊文献+

Remote sensing-based estimation of rice yields using various models:A critical review 被引量:2

原文传递
导出
摘要 Reliable estimation of region-wide rice yield is vital for food security and agricultural management.Field-scale models have increased our understanding of rice yield and its estimation under theoretical environmental conditions.However,they offer little infor-mation on spatial variability effects on farm-scale yield.Remote Sensing(RS)is a useful tool to upscale yield estimates from farm scales to regional levels.Much research used RS with rice models for reliable yield estimation.As several countries start to operatio-nalize rice monitoring systems,it is needed to synthesize current literature to identify knowledge gaps,to improve estimation accuracies,and to optimize processing.This paper critically reviewed significant developments in using geospatial methods,imagery,and quantitative models to estimate rice yield.First,essential characteristics of rice were discussed as detected by optical and radar sensors,band selection,sensor configuration,spatial resolution,mapping methods,and biophysical variables of rice derivable from RS data.Second,various empirical,process-based,and semi-empirical models that used RS data for spatial estimation of yield were critically assessed-discussing how major types of models,RS platforms,data assimilation algorithms,canopy state variables,and RS variables can be integrated for yield estimation.Lastly,to overcome current constraints and to improve accuracies,several possibilities were suggested-adding new modeling modules,using alternative canopy variables,and adopting novel modeling approaches.As rice yields are expected to decrease due to global warming,geospatial rice yield estimation techniques are indispensable tools for climate change assessments.Future studies should focus on resolving the current limitations of estimation by precise delineation of rice cultivars,by incorporating dynamic harvesting indices based on climatic drivers,using innovative modeling approaches with machine learning.
出处 《Geo-Spatial Information Science》 SCIE EI CSCD 2021年第4期580-603,共24页 地球空间信息科学学报(英文)
基金 This work is supported by New Zealand Ministry of Foreign Affairs and Trade PhD Scholarship and the University of Auckland’s Postgraduate Research Student Support Ministry of Foreign Affairs and Trade,New Zealand,University of Auckland.
  • 相关文献

参考文献5

二级参考文献26

共引文献44

同被引文献25

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部