摘要
研究了一类具有非线性发病率的随机SEIR传染病模型.通过构造适当的Lyapunov函数,证明了非线性发病率的随机SEIR传染病模型平稳分布的存在性,即当R_(0)^(s)>1时,系统存在平稳分布.与之前的文献相比,本文的条件更加简洁.
A class of stochastic SEIR infectious disease models with nonlinear incidence.By setting up an appropriate Lyapunov function, the existence of the stationary distribution of the stochastic SEIR infectious disease model with nonlinear incidence is proved, that is R_(0)^(s)>1,the system has a stationary distribution.Compare with the previous results, the conditions in this paper are more concise.
作者
宋宇恒
仲崇阳
韩七星
SONG Yu-heng;ZHONG Chong-yang;HAN Qi-xing(School of Mathematics,Changchun Normal University,Changchun 130032,China)
出处
《东北师大学报(自然科学版)》
CAS
北大核心
2022年第1期14-18,共5页
Journal of Northeast Normal University(Natural Science Edition)
基金
国家自然科学基金资助项目(11801041)
吉林省科技厅项目(20190201130JC)
长春师范大学研究生科研创新项目([2020]第52号)。