摘要
Background and aims:Noninvasive predictors of choledocholithiasis have generally exhibited marginal performance characteristics.We aimed to identify noninvasive independent predictors of endoscopic retrograde cholangiopancreatography(ERCP)-confirmed choledocholithiasis and accordingly developed predictive machine learning models(MLMs).Methods:Clinical data of consecutive patients undergoing first-ever ERCP for suspected chol-edocholithiasis from 2015 to 2019 were abstracted from a prospectively-maintained database.Multiple logistic regression was used to identify predictors of ERCP-confirmed choledocholithiasis.MLMs were then trained to predict ERCP-confirmed choledocholithiasis using pre-ERCP ultrasound(US)imaging only as well as using all available noninvasive imaging(US,computed tomography,and/or magnetic reso-nance cholangiopancreatography).The diagnostic performance of American Society for Gastrointestinal Endoscopy(ASGE)“high-likelihood”criteria was compared to MLMs.Results:We identified 270 patients(mean age 46 years,62.2%female,73.7%Hispanic/Latino,59%with noninvasive imaging positive for choledocholithiasis)with native papilla who underwent ERCP for suspected choledocholithiasis,of whom 230(85.2%)were found to have ERCP-confirmed chol-edocholithiasis.Logistic regression identified choledocholithiasis on noninvasive imaging(odds ratio(OR)¼3.045,P¼0.004)and common bile duct(CBD)diameter on noninvasive imaging(OR¼1.157,P¼0.011)as predictors of ERCP-confirmed choledocholithiasis.Among the various MLMs trained,the random forest-based MLM performed best;sensitivity was 61.4%and 77.3%and specificity was 100%and 75.0%,using US-only and using all available imaging,respectively.ASGE high-likelihood criteria demonstrated sensitivity of 90.9%and specificity of 25.0%;using cut-points achieving this specificity,MLMs achieved sensitivity up to 97.7%.Conclusions:MLMs using age,sex,race/ethnicity,presence of diabetes,fever,body mass index(BMI),total bilirubin,maximum CBD diameter,and choledocholithiasis on pre-ER
基金
J.H.Tabibian was supported in part by the United States National Center for Advancing Translational Sciences grant UL1 TR000135.