期刊文献+

基于TensorFlow的图像识别水果秤设计与实现 被引量:4

Design and implementation of image recognition fruit scale based on TensorFlow
下载PDF
导出
摘要 为了解决传统水果秤称重、支付方式的不足,在Jetson Nano平台驱动CSI摄像头进行实时图像检测,通过基于TensorFlow搭建的卷积神经网络模型完成水果识别,从而实现水果的自动称重计价播报。通过语音交互的方式了解用户的购买需求后,根据计价结果显示二维码进行扫码支付,整个购买过程无须售货员介入,并且实现了无接触购物。实验结果证明,所设计的图像识别水果秤可在2 s内完成水果的识别、称重和计价。水果识别准确率达到90%以上,同时实现了不同水果混装情况的辨别。 In order to solve the shortcomings of traditional fruit scale weighing and payment methods,the Jetson Nano platform drives the CSI camera to perform real-time image detection,and completes fruit recognition through the convolutional neural network model built on TensorFlow,thereby realizing the automatic weighing and pricing of fruits. After understanding the user’s purchase needs through voice interaction,the QR code is displayed according to the pricing result to scan the QR code. The entire purchase process does not require the intervention of the salesperson,and contactless shopping is realized. Experimental results prove that the designed image recognition fruit scale can complete the process of fruit recognition,weighing and pricing within 2 seconds. The fruit recognition accuracy rate reaches more than 90%,and at the same time,it realizes the discrimination of different fruit mixing situations.
作者 许龙铭 麦启明 卢家俊 陈苇浩 XU Longming;MAI Qiming;LU Jiajun;CHEN Weihao(Communication Engineering College,Guangzhou City Institute of Technology,Guangzhou 510800,China)
出处 《电子设计工程》 2022年第6期174-178,共5页 Electronic Design Engineering
关键词 图像识别 水果秤 Jetson Nano TensorFlow 卷积神经网络 语音交互 image recognition fruit scale Jetson Nano TensorFlow convolutional neural network voice interaction
  • 相关文献

参考文献17

二级参考文献161

  • 1汪云九,崔翯,齐翔林.BP学习网络中权值的感受野型初始化研究——Ⅰ.对收敛速度的影响[J].自然科学进展(国家重点实验室通讯),1996,6(3):346-350. 被引量:7
  • 2Y Lecun. LeNet-5, Convolutional neural network[J]. nternet: http://yann.lecun.com/exdb/lenet. 被引量:1
  • 3Y Lecun, C Cortes. The mnist database of handwritten digits[J]. Intelligenza Artificiale A.A,2012-2013. 被引量:1
  • 4Li Deng. The MNIST database of handwritten digit images for machine learning research[J]. IEEE Signal Processing Magazine,2012:141-142. 被引量:1
  • 5LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition [J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324. 被引量:1
  • 6HINTON G E, OSINDERO S, TEH Y W. A fast learning algorithm for deep belief nets [J]. Neural Computation, 2006, 18(7): 1527-1554. 被引量:1
  • 7LEE H, GROSSE R, RANGANATH R, et al. Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations [C]// ICML '09: Proceedings of the 26th Annual International Conference on Machine Learning. New York: ACM, 2009: 609-616. 被引量:1
  • 8HUANG G B, LEE H, ERIK G. Learning hierarchical representations for face verification with convolutional deep belief networks [C]// CVPR '12: Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2012: 2518-2525. 被引量:1
  • 9KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks [C]// Proceedings of Advances in Neural Information Processing Systems. Cambridge, MA: MIT Press, 2012: 1106-1114. 被引量:1
  • 10GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation [C]// Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2014: 580-587. 被引量:1

共引文献1435

同被引文献31

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部