期刊文献+

基于多模态特征融合的无人驾驶系统车辆检测 被引量:8

Vehicle Detection for Autonomous Vehicle System Based on Multi-modal Feature Fusion
下载PDF
导出
摘要 针对无人驾驶系统环境感知中的车辆检测精度低的问题,本文提出一种基于多模态特征融合的三维车辆检测算法。该算法通过毫米波雷达与摄像机联合标定,匹配2个传感器间的坐标关系并减小采样误差;采用统计滤波剔除毫米波雷达数据冗余点,减少离群点干扰;构造多模态特征融合模块,利用逐像素平均融合点云与图像信息;加入特征金字塔提取融合后的高级特征信息提升复杂道路场景下的检测精度;建立特征融合区域建议结构,根据高级特征信息生成区域建议;使用非极大值抑制去除冗余检测框后,通过检测框顶点匹配输出车辆检测结果。经KITTI数据集实验结果表明:所提出的方法能够快速、准确地实现车辆检测,平均检测时间为0.14 s,平均检测精度为84.71%。该算法具有重要的理论和应用价值,可为无人驾驶系统的车辆检测提供有效方案。 Aiming at the low accuracy of vehicle detection in unmanned system environment perception,a three-dimensional vehicle detection algorithm based on multi-modal feature fusion is proposed.Through the joint calibration of millimeter wave radar and camera,the coordinate relationship between the two sensors is matched and the sampling error is reduced.Statistical filtering is used to eliminate the redundant points of millimeter wave radar data and reduce the interference of outliers.The multi-modal feature fusion module is constructed,and the point cloud and image information are fused by pixel average.Adding the feature pyramid to extract the fused high-level feature information to improve the detection accuracy in complex road scenes,a feature fusion region recommendation structure is established,and the region recommendation is generated according to the advanced feature information.After removing the redundant detection frame,the vehicle detection results are output through the vertex matching of the detection frame.The experimental results on KITTI data set show that the proposed method can realize vehicle detection quickly and accurately.The average detection time is 0.14 s and the average detection accuracy is 84.71%.The algorithm has important theoretical and practical value,and can provide a powerful means for vehicle detection in unmanned system.
作者 薛其威 伍锡如 XUE Qiwei;WU Xiru(School of Electronic Engineering and Automation,Guilin University of Electronic Technology,Guilin Guangxi 541004,China;Guangxi Key Laboratory for Nonlinear Circuit and Optical Communication(Guangxi Normal University),Guilin Guangxi 541004,China)
出处 《广西师范大学学报(自然科学版)》 CAS 北大核心 2022年第2期37-48,共12页 Journal of Guangxi Normal University:Natural Science Edition
基金 国家自然科学基金(61863007,61603107) 广西自然科学基金(2020GXNSFDA238029) 桂林电子科技大学研究生教育创新计划项目(2020YCXS103)。
关键词 毫米波雷达 环境感知 多模态融合 车辆检测 无人驾驶系统 millimeter wave radar environment perception multi-modal feature fusion vehicle detection autonomous vehicle system
  • 相关文献

参考文献13

二级参考文献73

  • 1谌彤童.三维激光雷达在自主车环境感知中的应用研究[D].长沙:国防科技大学,2011. 被引量:1
  • 2Bertozzi M, Broggi A. GOLD: A parallel real time stereo visionsystem for generic obstacle and lane marking detection[J]. IEEETransactions on Image Processing, 1998, 7(1): 62-81. 被引量:1
  • 3Crisman J D, Thorpe C E. SCARF: A color vision systemthat tracks roads and intersections [J]. IEEE Transactions onRobotics and Automation, 1993, 9(1): 49-58. 被引量:1
  • 4Behringer R, Maurer M. Results on visual road recognitionfor road vehicle guidance[C]//IEEE Intelligent Vehicles Sym-posium. Piscataway, USA: IEEE,1996: 415-420. 被引量:1
  • 5Choi Y W, Jang Y W,Lee H J, et al. Three-dimensional LiDARdata classifying to extract road point in urban area[J]. IEEEGeoscience and Remote Sensing Letters, 2008, 5(4): 725-729. 被引量:1
  • 6Kibbel J, Justus W, Fiirstenberg K. Lane marking estimation anddeparture warning using multilayer laserscanner[C]//IEEE In-telligent Transportation Systems Conference. Piscataway, USA:IEEE, 2005: 607-611. 被引量:1
  • 7Lindner P,Richter E, Wanielik G. Multi-channel lidar process-ing for lane marking detection and estimation[C]//IntelligentTransportation Systems. Piscataway,USA: IEEE, 2009: 1-6. 被引量:1
  • 8Huang J J, Liang H W, Wang Z Z, et al. Robust lane markingdetection under different road conditions [C]//IEEE Internation-al Conference on Robotics and Biomimetics. Piscataway, USA:IEEE, 2013: 1753-1758. 被引量:1
  • 9Bezdek J C. Pattern recognition with fuzzy objective functionalgorithms[M]. Norwell, USA: Kluwer Academic Publishers,1981. 被引量:1
  • 10FERGLSON D, DARMS M, LRMSON C, et al. Detection, prediction,and avoidance of dynamic obstacles in urban environments[C]. Intelligent Vehicles Symposium,2008 IEEE. 1EEE,2008:1149-1154. 被引量:1

共引文献191

同被引文献97

引证文献8

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部