摘要
设G是一乘法群,R是G-分次环,引入n-Gorenstein分次投射模和n-Gorenstein分次内射模,讨论了2类模的同调性质,证明了如果分次R-模M满足n-G-gr-pd_(R)M=m<∞,则存在正合列0→K→G→M→0,其中G是n-Gorenstein分次投射R-模,pd_(R)K=m-1。
Let G be a multiplicative group,R be a G-graded ring,n-Gorenstein graded projective and n-Gorenstein graded injective modules are introduced,the homological properties and the dimensions of the two types of modules are investigated.It is proved that if the graded R-module M satisfies n-G-gr-pd_(R)M=m<∞,then exists an exact sequence 0→K→G→M→0,where G is n-Gorenstein graded projective R-module and pd_(R)K=m-1.
作者
袁倩
张文汇
张铭
YUAN Qian;ZHANG Wen-hui;ZHANG Ming(College of Mathematics and Statistics,Northwest Normal University,Lanzhou 730070,Gansu,China;Longgang Middle School,Dazu District,Chongqing 402360,China)
出处
《山东大学学报(理学版)》
CAS
CSCD
北大核心
2022年第2期31-37,共7页
Journal of Shandong University(Natural Science)
基金
国家自然科学基金资助项目(11861055)。