期刊文献+

基于最大信息系数的多变量间相关关系度量方法研究 被引量:3

Research on Multivariate Correlation Measurement Method Based on Maximum Information Coefficient
下载PDF
导出
摘要 相关性分析因其能快速发现数据间潜在的关系而变得越来越重要了.在现实生活中,人们经常要分析多变量间的相关性大小.鉴于此,提出一种能够度量多变量间相关关系的度量方法——多变量间的最大互信息系数(Multi-variable Maximal Mutual Information Coefficient, Mv_MMIC),该方法能够探测多变量间广泛的相关关系,这里的广泛相关关系包括线性和非线性的函数型关系,甚至所有的函数型关系.首先利用最大互信息系数MIC (Mutual Information Coefficient)构建最大互信息系数矩阵,然后基于矩阵的特征分解原理,利用最大互信息系数矩阵的特征值构建出度量多变量间相关关系的度量方法,把度量两个随机变量间的相关关系的方法MIC巧妙地从两纬度的度量准则推广到度量多变量间的相关性的多维度度量准则中,最后通过实验证明:多变量间的最大互信息系数Mv_MMIC保留了MIC的通用性和公平性的优点,具有一定的理论研究和实际应用价值. Correlation analysis is increasingly important because it can quickly identify the potential relationships among the data.People often have to identify the correlation among multi variables in their lives.In view of it,this thesis present a measure of dependence for multi-variable relationships:the multi-variable maximal mutual information coefficient( Mv_MMIC).Mv_MMIC can capture a wide range of associations,not limited tospecific function types(such as linear,exponential,or periodic),or even to all functional relationships.First,we use MMIC to build the maximum mutual information coefficient matrix.Second,we utilize the value of maximal mutual information coefficient matrix to construct a metric method for measuring the correlation between multiple variables based on the feature decomposition principle of matrix.Then,MIC measuring the correlation between two random variables is generalized to the correlation analysis of multi variables,which has certain theoretical research and practical application value.At last,our experiments show that Mv_MMIC still retains the generality and equitability,which has certain theoretical research and practical application value.
作者 张朝霞 吴杰 ZHANG Zhaoxia;WU Jie(Department of Computer Science,Taiyuan Normal University,Jinzhong 030619,China;Graduate Department,Taiyuan Normal University,Jinzhong 030619,China)
出处 《太原师范学院学报(自然科学版)》 2022年第1期34-40,共7页 Journal of Taiyuan Normal University:Natural Science Edition
基金 国家社科基金项目(20BJL080) 山西省重点研发计划项目(201803D121088) 太原师范学院教学改革项目校级教学改革项目(JGLX1826)。
关键词 多变量相关 非线性相关 最大信息系数 多变量间的最大互信息系数 multi variable correlation nonlinear correlation maximum information coefficient multi-variable maximal mutual information coefficient
  • 相关文献

参考文献3

二级参考文献41

  • 1Sun Wen-Shuang, Chen Lan-Xiang, Multivariate Statistical Analysis. Beijing: Higher Education Press, 1994(in Chinese)(孙文爽, 陈兰详. 多元统计分析. 北京: 高等教育出版社, 1994) 被引量:1
  • 2Bartlett M.S.. Further aspects of the theory of multiple regression. Proceedings of the Cambridge Philosophical Society, 1938, 34: 33~40 被引量:1
  • 3Vapnik V.N.. The Nature of Statistical Learning Theory. NY: Springer-Verlag, 1995(in Chinese)(张学工译. 统计学习理论的本质. 北京:清华大学出版社, 1999) 被引量:1
  • 4Scholkopf B., Smola A., Müller K.R.. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 1998, 10: 1299~1319 被引量:1
  • 5Mika S., Rtsch G. et al. Fisher discriminant analysis with kernels. In: Neural Networks for Signal Processing IX, New York: IEEE Press, 1999, 41~48 被引量:1
  • 6Akaho S.. A kernel method for canonical correlation analysis. In: Proceedings of the International Meeting on Psychometric Society (IMPS2001), Osaka, Japan, 2001,101~105 被引量:1
  • 7Bian Zhao-Qi, Zhang Xue-Gong et al.. Pattern Recognition (2nd Edition). Beijing: Tsinghua University Press, 1999(in Chinese)(边肇祺, 张学工等. 模式识别(第2版). 北京: 清华大学出版社, 1999) 被引量:1
  • 8Cristianini N., Shawe-Taylor J.. An Introduction to Support Vector Machines. Cambridge, England: Cambridge University Press, 2000 被引量:1
  • 9Mika S., Rtsch G., Müller K.R.. A mathematical programming approach to the Kernel Fisher algorithm. In: Leen T.K., Dietterich T.G., Tresp V. eds, Advances in Neural Information Processing Systems 13, Cambridge, MA: MIT Press, 2001, 591~597 被引量:1
  • 10Engel Y., Mannor S., Meir R.. Sparse online greedy support vector regression. In: Proceedings of the 13th European Conference on Machine Learning, Helsinki, Finland, 2002, 84~96 被引量:1

共引文献36

同被引文献34

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部