期刊文献+

基于元认知理论的短距离追逐跑体能增强模型

Physical Enhancement Model of Short Distance Pursuit Based on Metacognitive Theory
下载PDF
导出
摘要 现有方法提取的短距离追逐姿态特征点结果准确度较低,导致体能增强效果不理想,为此设计了基于元认知理论的短距离追逐体能增强模型。通过提取短距离追逐姿态特征点,结合元认知理论构建短距离追逐姿态矫正模型,分析短距离追逐姿态矫正的技术动作,创建体能专项数据库,完成短距离追逐体能增强。实验结果表明,所提方法的短距离追逐姿态特征点提取结果与实际测试的特征点提取结果一致,能够准确矫正短距离追逐姿态,提高体能增强效果。 The accuracy of short-range pursuit posture feature points extracted by existing methods is low,resulting in unsatisfactory physical enhancement effect.Therefore,a short-range pursuit physical enhancement model based on metacognitive theory is designed.By extracting the feature points of short-range pursuit attitude,the correction model of short-range pursuit attitude is constructed based on metacognitive theory,and the technical actions of short-range pursuit attitude correction are analyzed.A special database of physical fitness is created to enhance the physical fitness of short-range pursuit.The experimental results show that the feature point extraction results of the proposed method are consistent with the feature point extraction results of the actual test,which can accurately correct the short-range pursuit attitude and improve the physical fitness enhancement effect.
作者 康亚志 KANG Ya-zhi(College of Physical Education,Hefei Normal University,Hefei 230601,China)
出处 《辽东学院学报(自然科学版)》 CAS 2022年第1期73-76,共4页 Journal of Eastern Liaoning University:Natural Science Edition
基金 合肥师范学院省级科研平台专项重点项目(2020PTZD19)。
关键词 元认知理论 姿态矫正 短距离追逐 体能增强 体能专项数据库 metacognitive theory attitude correction short-range pursuit physical enhancement physical fitness special database
  • 相关文献

参考文献10

二级参考文献54

  • 1Ferrari V,Marin-Jimenez M,Zisserman A.Pose search:retrieving people using their pose[C]∥Computer Vision and Pattern Recognition,2009.CVPR 2009.IEEE Conference on IEEE,2009:1-8. 被引量:1
  • 2Morency L,Quattoni A,Darrell T.Latent-dynamic discriminative models for continuous gesture recognition[C]∥Computer Vision and Pattern Recognition,2007.CVPR'07.IEEE Conference on IEEE,2007:1-8. 被引量:1
  • 3Messing R,Pal C,Kautz H.Activity recognition using the velocity histories of tracked keypoints[C]∥Computer Vision,2009 IEEE12th International Conference on IEEE,2009:104-111. 被引量:1
  • 4Natarajan P,Nevatia R.View and scale invariant action recognition using multiview shape-flow models[C]∥Computer Vision and Pattern Recognition,2008.CVPR 2008.IEEE Conference on IEEE,2008:1-8. 被引量:1
  • 5Hu Y,Cao L,Lv F,et al.Action detection in complex scenes with spatial and temporal ambiguities[C]∥Computer Vision,2009 IEEE12th International Conference on IEEE,2009:128-135. 被引量:1
  • 6Weinland D,Boyer E,Ronfard R.Action recognition from arbitrary views using 3d exemplars[C]∥Computer Vision,2007.ICCV2007.IEEE 11th International Conference on IEEE,2007:1-7. 被引量:1
  • 7Natarajan P,Singh V K,Nevatia R.Learning 3d action models from a few 2d videos for view invariant action recognition[C]∥Computer Vision and Pattern Recognition(CVPR),2010 IEEE Conference on IEEE,2010:2006-2013. 被引量:1
  • 8Felzenszwalb P F,Huttenlocher D P.Pictorial structures for object recognition[J].International Journal of Computer Vision,2005,61(1):55-79. 被引量:1
  • 9Lan X,Huttenlocher D P.Beyond trees:Common-factor models for2d human pose recovery[C]∥Computer Vision,2005.ICCV 2005.Tenth IEEE International Conference on IEEE,2005,1:470-477. 被引量:1
  • 10Tian T P,Sclaroff S.Fast globally optimal 2d human detection with loopy graph models[C]∥Computer Vision and Pattern Recognition(CVPR),2010 IEEE Conference on IEEE,2010:81-88. 被引量:1

共引文献66

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部