摘要
高双折射光纤对线偏振光具有强的偏振保持能力,因此,开发中红外高双折射光纤对于高效使用高偏振中红外激光意义重大。本研究团队对具有最大双折射值的一字型悬吊芯结构进行了参数优化,结果表明:当矩形芯的长宽比a/b=3.6时,在波长1.55μm处,双折射能达到4.7×10^(-4),高于传统的石英保偏光纤;当空气孔半径r=28μm且两空气孔间距d=5.1μm时,双折射值在波长5μm处高达7.1×10^(-3);在工作波长范围内,两极化模的限制损耗均低于10^(-3)dB/m量级。通过实验制备了结构最优的一字型硫系悬吊芯光纤,其在波长5μm处的双折射高达4.6×10^(-3),接近石英光子晶体光纤的双折射水平。
Objective The high-birefringence fiber exhibits excellent performance in maintaining light polarization.For the application of high-polarized laser in the mid-infrared field,the exploration of high-birefringence fiber is essential.Increasing the asymmetry of the fiber structure can significantly enhance birefringence;thus,changing the core shape of the traditional fiber structure can increase birefringence up to 10^(-4).Therefore,researchers have explored photonic crystal fiber (PCF)to obtain high birefringence by optimizing the size and arrangement of air holes.Although PCF’s simulated birefringence can reach up to 10^(-2),there is no report about the PCF due to its structural complexity.In this study,we fabricated a novel“—”typed suspended-core chalcogenide fiber with birefringence of approximately 4.6×10^(-3) at 5μm,which is much higher than that of the traditional quartz polarization-maintaining fiber.We hope that our simulation and experimental data can contribute to further study of high-birefringence fiber in the mid-infrared and pave the way for the further development of mid-infrared high polarization-maintaining fiber optics.Methods In this study,we optimized the fiber structure and calculated its birefringence using the commercial software of COMSOL Multiphysics.First,we selected a kind of“—”typed suspended-core fiber as a basic model for structural optimization due to its largest birefringence among suspended-core fibers.Second,we optimized the fiber structure by changing the core shape,aspect ratio,size,and distance between the two air holes.Finally,we fabricated an improved“—”typed suspended-core chalcogenide fiber based on glass extrusion technology,with Ge_(10)As_(24)Se_(66)and Ge_(10)As_(23)Se_(67)acting as core and cladding.We compared the birefringence and analyzed the simulated and experimental data.Subsequently,we calculated the confinement loss and dispersion of the fiber.Results and Discussions The simulation results show that the birefringence of rectangular core fibe
作者
彭芊芊
王弦歌
杨克羽
盛俊凯
汪金晶
王训四
白胜闯
刘永兴
赵浙明
李森森
李曼
戴世勋
聂秋华
Peng Qianqian;Wang Xiange;Yang Keyu;Sheng Junkai;Wang Jinjing;Wang Xunsi;Bai Shengchuang;Liu Yongxing;Zhao Zheming;Li Sensen;Li Man;Dai Shixun;Nie Qiuhua(Laboratory of Infrared Materials and Devices,Research Institute of Advanced Technology,Faculty of Electrical Engineering and Computer Science,Ningbo University,Ningbo,Zhejiang 315211,China;Key Laboratory of Photoelectric Detection Materials and Devices of Zhejiang Province,Ningbo,Zhejiang 315211,China;Jiaxing Nanhu University,Jiaxing,Zhejiang 314001,China;Key Laboratory of Electro-Optical Control and Security,Technology,Tianjin 300308,China)
出处
《中国激光》
EI
CAS
CSCD
北大核心
2022年第1期223-231,共9页
Chinese Journal of Lasers
基金
国家自然科学基金(61875097,61627815,61705091)
浙江省自然科学基金(LR18F050002)
浙江省万人计划
装备预研重点实验室基金(6142107200316)
宁波市领军和拔尖人才培养工程择优资助项目
嘉兴市科技局项目(2017AY13010)
王宽诚幸福基金课题资助项目
宁波市自然科学基金(202003N4101)。
关键词
光纤光学
高双折射
中红外波段
悬吊芯光纤
硫系玻璃
fiber optics
high-birefringence
mid-infrared band
suspended-core fiber
chalcogenide fiber