期刊文献+

Ultralow-strain Ti substituted Mn-vacancy layered oxides with enhanced stability for sodium-ion batteries

下载PDF
导出
摘要 Anionic redox reaction(ARR) in layered manganese-based oxide cathodes has been considered as an effective strategy to improve the energy density of sodium-ion batteries.Mn-vacancy layered oxides deliver a high ARR-related capacity with small voltage hysteresis,however,they are limited by rapid capacity degradation and poor rate capability,which arise from inferior structure changes due to repeated redox of lattice oxygen.Herein,redox-inactive Ti^(4+)is introduced to substitute partial Mn^(4+)to form Na_(2) Ti_(0.5)Mn_(2.5)O_7(Na_(4/7)[□_(1/7)Ti_(1/7)Mn_(5/7)]O_(2),□ for Mn vacancies),which can effectively restrain unfavorable interlayer gliding of Na2 Mn307 at high charge voltages,as reflected by an ultralow-strain volume variation of 0.11%.There is no irreversible O_(2) evolution observed in Na_(2) Ti_(0.5)Mn_(2.5)O_7 upon charging,which stabilizes the lattice oxygen and ensures the overall structural stability.It exhibits increased capacity retention of 79.1% after 60 cycles in Na_(2) Ti_(0.5)Mn_(2.5)O_7(17.1% in Na_(2) Mn_(3) O_7) and good rate capability(92.1 mAh g^(-1) at 0.5 A g^(-1)).This investigation provides new insights into designing high-performance cathode materials with reversible ARR and structural stability for SIBs.
出处 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第12期351-357,I0008,共8页 能源化学(英文版)
基金 Financial supports from the National Natural Science Foundation of China (21822506 and 51761165025) the Tianjin Natural Science Foundation (19JCJQJC62400) the 111 project of B12015。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部