期刊文献+

基于鱼骨型仓库布局的多车拣选路径问题优化 被引量:8

An Optimization of Multi-vehicle Picking Routing Problem Based on Fishbone Warehouse Layout
下载PDF
导出
摘要 为了推动鱼骨型仓库在实际场景下的应用,针对鱼骨型仓库布局下的拣货路径优化问题,构建待拣货点距离计算模型和以有载重、容积限制的多车拣货距离最短为总目标的拣选路径优化模型。考虑遗传算法(GA)全局搜索能力强、粒子群算法(GAPSO)收敛速度快以及蚁群算法(ACO)较强的局部寻优能力,提出一种解决拣选路径优化模型的混合算法(GA-PSO-ACO)。通过不同订单规模的仿真实验,得出该混合算法在适应度值、迭代次数、收敛速度等方面均优于GA算法和GAPSO算法,且在订单规模较大时,平均适应度值约降低8%,有效缩短了总拣选距离,验证了混合算法在解决鱼骨型仓库布局下的拣货路径问题的先进性和有效性,为解决此类仓库内部的拣货路径问题提供新的解决方法和思路。 In order to promote the application of fishbone warehouse in actual scenarios,aiming at the problem of picking route optimization under the fishbone warehouse layout,a distance calculation model for picking points and a picking route optimization model based on the shortest multi-vehicle picking distance with load and volume restrictions as the overall goal were constructed.Considering the strong global search ability of the genetic algorithm(GA),the fast convergence speed of the particle swarm optimization(GAPSO)and the strong local optimization ability of the ant colony algorithm(ACO),a hybrid algorithm to solve the optimization model of the picking route was proposed.Through simulation experiments of different order sizes,it is concluded that the hybrid algorithm is superior to the GA algorithm and the GAPSO algorithm in terms of fitness value,number of iterations,and convergence speed.And when the order size is large,the average fitness value is reduced by about 8%,which effectively shortens the total picking distance.The results verify the advancement and effectiveness of the hybrid algorithm in solving the picking route problem under the fishbone warehouse layout,and provide new solutions and ideas for solving the picking route problem inside such warehouses.
作者 胡小建 袁丁 HU Xiaojian;YUAN Ding(School of Management,Hefei Universidy of Technoloty,Hefei 230009,China;Key Laboratory of Process Optimization and Intelligent Decision Making of Ministry of Education,Hefei Universidy of Technoloty,Hefei 230009,China)
出处 《工业工程》 北大核心 2022年第1期45-53,共9页 Industrial Engineering Journal
基金 工业和信息化部财政智能制造综合标准化与新模式应用资助项目(JZ2016GQBK1075)。
关键词 鱼骨型仓库布局 待拣货点距离计算模型 拣选路径优化模型 GA-PSO-ACO混合算法 fishbone warehouse layout a distance calculation model for picking points a picking path optimization model GA-PSO-ACO hybrid algorithm
  • 相关文献

参考文献6

二级参考文献28

  • 1周波,钱来,孟正大,戴先中.基于改进遗传算法工业机器人多路径组合规划[J].华中科技大学学报(自然科学版),2011,39(S2):9-12. 被引量:6
  • 2高亮,高海兵,周驰.基于粒子群优化的开放式车间调度[J].机械工程学报,2006,42(2):129-134. 被引量:16
  • 3刘烨,倪志伟,刘慧婷.求解旅行商问题的一个改进的遗传算法[J].计算机工程与应用,2007,43(6):65-68. 被引量:9
  • 4C A Coello Coello.A Comprehensive survey of evolutionary-based multiobjective optimization,techniques.Knowledge and Information Systems,1999,1(3):269~308 被引量:1
  • 5J D Schaffer.Multiple objective optimization with vector evaluated genetic algorithms.The First Int'l Conf on Genetic Algorithms,Lawrence Erlbaum,1985 被引量:1
  • 6D A V Veldhuizen,G B Lamont.Multiobjective evolutionary algorithm research:A history and analysis.Department of Electrical and Computer Engineering,Graduate School of Engineering,Air Force Institute of Technology,Tech Rep:TR-98-03,1998 被引量:1
  • 7R Eberhart,J Kennedy.A new optimizer using particle swarm theory.In:Proc of the 6th Int'l Symposium on Micro Machine and Human Science.Piscataway,NJ:IEEE Service Center,1995.39~43 被引量:1
  • 8J Kennedy,R Eberhart.Particle swarm optimization.IEEE Int'l Conf on Neural Networks,Perth,Australia,1995 被引量:1
  • 9K E Parsopoulos,M N Vrahatis.Particle swarm optimizer in noisy and continuously changing environments.In:M H Hamza ed.Artificial Intelligence and Soft Computing.Iasted:ACTA Press,2001.289~294 被引量:1
  • 10K E Parsopoulos,M N Vrahatis.Particle swarm optimization method for constrained optimization problems.Euro-Int'l Symp on Computational Intelligence 2002,Slovakia,2002 被引量:1

共引文献551

同被引文献68

引证文献8

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部