期刊文献+

Symmetry and monotonicity of positive solutions to Schr?dinger systems with fractional p-Laplacians

下载PDF
导出
摘要 In this paper,we first establish narrow region principle and decay at infinity theorems to extend the direct method of moving planes for general fractional p-Laplacian systems.By virtue of this method,we investigate the qualitative properties of positive solutions for the following Schrodinger system with fractional p-Laplacian{(-△)^(s)_(p)u+au^(p-1)=f(u,v),(-△)^(t)_(p)v+bv(p-1)=g(u,v),where 0<s,t<1 and 2<p<∞.We obtain the radial symmetry in the unit ball or the whole space R^(N)(N≥2),the monotonicity in the parabolic domain and the nonexistence on the half space for positive solutions to the above system under some suitable conditions on f and g,respectively.
出处 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2022年第1期52-72,共21页 高校应用数学学报(英文版)(B辑)
基金 Supported by the National Natural Science Foundation of China(12101452,12071229,11771218)。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部