期刊文献+

基于深度学习的HRRP识别姿态敏感性分析 被引量:2

Pose sensitivity analysis of HRRP recognition based on deep learning
下载PDF
导出
摘要 特征提取是基于高分辨距离像(high resolution range profile, HRRP)的雷达目标识别的关键技术之一。传统人工提取特征的算法,仅利用浅层结构特征,无法有效解决姿态敏感性问题,从而限制了目标识别方法的泛化性。对此,提出一种基于深度学习的目标识别方法,并通过详细的姿态角性能测试分析了该方法的应用边界条件。通过构造适合处理HRRP的卷积神经网络(convolutional neural network, CNN)模型,充分发掘目标深层次姿态不敏感属性特征,完成高精度目标识别。基于实测数据的实验结果表明,所提方法具有一定的抗姿态敏感性特性,边界条件分析可为该方法的工程化应用提供指导。 Feature extraction is one of the key technologies for high resolution range profile(HRRP) based radar target recognition. The traditional artificial feature extraction algorithm, which only uses shallow structure features, can not effectively solve the pose sensitivity problem, which limits the generalization of target recognition methods. Thus, a target recognition method based on deep learning is proposed, and the application boundary conditions of this method through detailed pose angle performance test is analyzed. By constructing a convolutional neural network(CNN) model suitable for processing HRRP, the deep-seated pose insensitive attributes of targets are fully explored, and high-precision target recognition is completed. Based on the measured data, the experimental results show that the proposed method has certain anti pose sensitivity characteristics, and the boundary condition analysis can provide guidance for the engineering application of the method.
作者 孙晶明 虞盛康 孙俊 SUN Jingming;YU Shengkang;SUN Jun(Nanjing Research Institute of Electronics Technology,Nanjing 210039,China;Key Laboratory of Intellisense Technology,China Electronics Technology Group Corporation,Nanjing 210039,China)
出处 《系统工程与电子技术》 EI CSCD 北大核心 2022年第3期802-807,共6页 Systems Engineering and Electronics
基金 国家自然科学基金(U19B2031)资助课题。
关键词 雷达目标识别 高分辨距离像 姿态敏感性 深度学习 卷积神经网络 radar target recognition high resolution range profile(HRRP) pose sensitivity deep learning convolutional neural network(CNN)
  • 相关文献

参考文献9

二级参考文献42

  • 1杜兰,刘宏伟,保铮,张军英.基于复数高分辨距离像特征提取的雷达自动目标识别[J].中国科学(F辑:信息科学),2009,39(7):731-741. 被引量:5
  • 2刘宏伟,马建华,保铮.BOX-COX变换提高雷达高分辨距离像识别性能的物理机理分析.见:第九届全国雷达学术年会论文集,烟台,2004.354-357. 被引量:1
  • 3Chen B, Liu H W, Chai J, et al. Large margin feature weighting method via linear programming. IEEE T Knowl Data En, 2009, 21(10): 1475-1488. 被引量:1
  • 4Wehner D R. High-resolution radar. London: Artech House, 1995. 被引量:1
  • 5Mark A R. Fundamental of Radar Signal Processing. New York: McGraw-Hill, 2005 ]. 被引量:1
  • 6Liao X J, Bao Z, Xing M D. On the aspect sensitivity of high resolution range profiles and its reduction methods. In: Rec IEEE 2000 Int Radar Conf Alexandria, VA, 2000. 310-315. 被引量:1
  • 7Xing M D, Ban Z, Pei B N. Properties of high-resolution range profiles. Opt Eng, 2002, 41(2): 493-504. 被引量:1
  • 8Vespe M, Baker C J, Griffiths H D. Radar target classification using multiple perspectives. IET Radar Son Nav, 2007, 1(4): 300-307. 被引量:1
  • 9保铮,刑孟道,王彤.雷达成像技术.北京:电子工业出版社,2006. 被引量:1
  • 10Li H J, Yang S H. Using range profiles as feature vectors to identify aerospace objects. IEEE T Antenn Propag, 1993, 41(3): 261-268. 被引量:1

共引文献69

同被引文献13

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部