摘要
实时混合试验是一种研究速度相关型试件动力性能的抗震试验方法,可以应用于拉索-阻尼器系统的力学行为研究。由于拉索具有较强的几何非线性,传统的线性无条件稳定积分算法无法保证拉索-阻尼器系统动力计算的稳定性。能量一致积分方法可以实现对非线性系统的无条件稳定,但应用于实时混合试验时,会遇到迭代导致作动器加载速度波动较大的问题。为了将能量一致积分方法应用于实时混合试验中,提出采用固定迭代次数并对迭代位移进行插值来实现平滑加载,然后对测得的试验子结构恢复力进行修正来实现系统能量一致。最后,对一个拉索-阻尼器系统进行了一阶模态振动下的实时混合试验数值仿真,验证了该方法的可行性。
Real time hybrid test is an aseismic test method to study dynamic performance of velocity dependent specimens,it can be applied to study mechanical behavior of cable-damper system.Due to the strong geometric nonlinearity of cable,the traditional linear unconditional stable integral algorithm can’t ensure the stability of dynamic calculation of cable-damper system.The energy consistent integration method can realize the unconditional stability of nonlinear systems,but when it is applied in real-time hybrid tests,it can encounter the problem of actuator loading speed’s large fluctuation caused by iteration.Here,to apply the energy consistent integration method in real-time hybrid tests,a fixed number of iterations and interpolation of iterated displacement were proposed to realize smooth loading,and then the measured restoring force of the tested substructure was modified to realize the energy consistent of the system.Finally,the virtual real-time hybrid simulation for a cable-damper system under its first-order modal vibration was performed to verify the feasibility of the proposed method.
作者
杨格
孙红硕
吴斌
潘天林
王贞
YANG Ge;SUN Hongshuo;WU Bin;PAN Tianlin;WANG Zhen(School of Civil Engineering and Architecture,Wuhan University of Technology,Wuhan 430070,China;Key Laboratory of Earthquake Engineering Simulation and Seismic Resilience of China Earthquake Administration,Tianjin University,Tianjin 300350,China;School of Civil Engineering and Architocture,Northeast Electric Power University,Jilin 132012,China)
出处
《振动与冲击》
EI
CSCD
北大核心
2022年第3期148-153,223,共7页
Journal of Vibration and Shock
基金
国家自然科学基金(52008320,51878525,51808101)
中国地震局地震工程综合模拟与城乡韧性重点实验室开放课题。
关键词
能量一致积分方法
实时混合试验
拉索-阻尼器系统
几何非线性
energy consistent integration method
real-time hybrid test
cable-damper system
geometric nonlinearity