期刊文献+

基于灵敏度分析的翼伞系统动力学参数辨识 被引量:2

Dynamic Parameter Identification of Parafoil Systems Based on Sensitivity Analysis
下载PDF
导出
摘要 翼伞系统动力学参数在飞行过程中具有强非线性特点,很难构建精确的动力学模型,导致操稳特性分析和控制律设计具有很大难度。文章在翼伞系统六自由度动力学模型的基础上,采用Sobol灵敏度分析的方法,筛选出能够对翼伞系统动力学特性进行有效分析的主要动力学参数,然后,利用衰减记忆递推最小二乘法在线辨识这些动力学参数,通过对每个数据进行指数加权,减小前期扰动对辨识结果的影响。仿真结果表明,文章研究的方法具有较好的辨识结果。 The dynamic parameters of the parafoil aircraft system have strong nonlinear characteristics in flight process,so it is difficult to build an accurate dynamic model,which makes it very difficult to analyze the stability characteristics and design the control law.In this paper,based on the six degree of freedom dynamics of parafoils system,the main dynamic parameters which can effectively analyze the dynamic characteristics of the parafoil aircraft are selected by Sobol sensitivity analysis method.Then,the main dynamic parameters are identified on-line by using the attenuation memory recursive least squares method(AMR-LSM).Each data is exponentially weighted by this method,so as to reduce the influence of the previous disturbance on the identification results.The simulation results show that the identification method can achieve good identification results both in ideal environment and random disturbance environment.
作者 赵令公 贺卫亮 杜钰舰 ZHAO Linggong;HE Weiliang;DU Yujian(Beihang University,Beijing 102206,China)
出处 《航天返回与遥感》 CSCD 北大核心 2022年第1期26-39,共14页 Spacecraft Recovery & Remote Sensing
关键词 动力学参数辨识 索波尔灵敏度分析 衰减记忆递推最小二乘法 翼伞系统 parameter identification Sobol sensitivity analysis Attenuation memory recursive least square method Parafoil system
  • 相关文献

参考文献7

二级参考文献12

  • 1Whorton M S. Closed-loop system identification with genetic algorithms [ R ]. AIAA 2004-4887,2004. 被引量:1
  • 2Girija G, Raol J. Controller information based identification for unstable/augmented [ R]. AIAA 96-0900,1996. 被引量:1
  • 3Shin J Y. Closed-loop evaluation of an integrated failure identification and fault tolerant control system for a transport aircraft [R]. AIAA 2006-6310,2006. 被引量:1
  • 4Jategaonkar R V, Plaetschke E. Estimation of aircraft parameters using filter error methods and extended Kalman filter [ R]. DFVLR-FB 88-15,1988. 被引量:1
  • 5JATEGAONKAR R V,PLAETSCHKE E.Algorithms for Aircraft Parameter Estimation Accounting for Process and Measurement Noise[J],Journal of Aircraft,1989,26(4):360-372. 被引量:1
  • 6MORELLI E A,KLEN V.Accuracy of aerodynamic model parameters estimated from flight test data[J],Journal of guidance,control,and dynamics,1997,20(1):74-80. 被引量:1
  • 7MAN K F,TANG K S,WONG S K.Genetic algorithms:concepts and designs[M].London,New York:Springer,1999. 被引量:1
  • 8RENDERS J M,FLASSE S P.Hybrid methods using genetic algorithms for global optimization[J].IEEE transactions on systems,man,and cybernetics-part b:cybernetics,1996,26(2):243-258. 被引量:1
  • 9BURKE E K,SMITH A J.Hybrid evolutionary techniques for the maintenance scheduling problem[J].IEEE Transactions on Power Systems,2000,15(1):122-128. 被引量:1
  • 10SUZUKI J.A Markov chain analysis on simple genetic algorithms[J].IEEE transaction on systems,man,and cybernetics,1995,25(4):655-659. 被引量:1

共引文献24

同被引文献14

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部